降雨量是最常见的水文气象变量,是许多水文应用(例如径流计算、洪水预报以及结构工程设计)不可或缺的基础数据。但是,由于系统误差或者人为因素,原始的降雨数据常常包含许多误差和不一致性,因此在使用降雨量数据进行分析前,必须对其可靠性进行严格验证。
在2020年11月27日QGIS开放日直播视频中,Ujaval Gandhi演示了使用QGIS表达式,通过与邻近站点进行比较来识别可疑降雨量观测值的空间方法验证降雨数据空间同质性,所讲解的方法和解决问题的思路使我收获颇丰,特整理出来与大家分享。
01 降雨量观测数据检测
-
降雨数据的空间相关性
降雨表现出一定程度的空间一致性。降雨测量的空间相关性取决于以下因素:
-
持续时间(较短持续时间的相关性较小);
-
距离(与距离增加的相关性较小);
-
降水类型(对流降水的相关性较小);
-
地形(与丘陵地形的相关性较小)。
-
最近邻算法
假设降雨数据在较长的时间内进行汇总后,在较短距离内显示出一定的空间相关性。因此,可以对检测站点的降雨量测量值与相邻站点测量值做同质性验证,这是最近邻算法验证降雨量数据的基础,具体描述如下:
根据周围站点观测到的降雨量加权平均值,计算得出待检测站点降雨量的估算。如果观测值和估计值之间的误差超过预设的阈值,则认为该待检测站点的观测值可疑,将其标记以进一步调查其误差产生的可能原因。
——印度NHP降雨数据验证手册
-
QGIS实现最近邻算法
在QGIS中,最近邻算法可按以下步骤进行:
-
识别邻近站点;
-
计算待检测站点到邻近站点的距离;
-
根据降雨量估算值标识可疑观察站点;
02 操作步骤
-
获取示范数据
本文中使用2020年6月佛罗里达州的降水数据为示范,来自全球历史气候学网络(GHCN)。
示范数据的下载地址:
链接:https://pan.baidu.com/s/1ufEwdqtmK0vMz9G1EFbZ-g
提取码:of8q
-
识别和选择邻近观测站
选择邻近观测站必须满足以下条件:
-
待测站点与相邻站点之间的距离必须小于指定的最大相关距离,例如Rmax为10(km);
-
最多考虑8个邻近观测站;
-
为了减少选择中的空间偏差,以待测试站的为中心,每个象限内最多选择两个邻近观测站点。
在示范数据中,点图层ghcn_stations包含佛罗里达州降雨量观测站的位置,使用aggregate()函数,查找10km(