题意:有n个人,这n个人要进行排队,每个人有可能站在区间[Li,Ri]的区间,现在求一个站队的序列,要求人数尽可能大,在人数最多的情况下让站队的人的编号的字典序最大。
思路:写完以后看网上的题解都是二分匹配啊。。。只有我用贪心写了么?好吧,感觉这题二分匹配根本不敢想嘛,还是贪心比较好。首先,如果没有让编号字典序最大的要求,那么只要贪心就可以了,按照每个人的L值排序,让L大的在前面,然后贪心地安排位置,尽量让这个人站在更靠右的位置。那么,为了构造一个字典序最大的解,首先贪心去找出一个最大值。然后从后向前枚举最终序列中编号最小的人的编号k,那么可选的人就是k~n,看这些人是否能达到最大值,如果可以,那么就让第一个人是k就行了,接下来,枚举剩下的人中编号最小的,这个值当然是要大于k……这样递归去求出所有的结果就行了。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#include<stack>
#include<set>
#include<cmath>
#include<vector>
#include<bitset>
#define inf 0x3f3f3f3f
#define Inf 0x3FFFFFFFFFFFFFFFLL
#define eps 1e-6
#define pi acos(-1.0)
using namespace std;
typedef long long ll;
const int maxn = 110;
struct Node
{
int L,R,id;
Node(int L = 0,int R = 0,int id = 0):L(L),R(R),id(id){}
bool operator < (const Node & a) const
{
return L > a.L;
}
}node[maxn],a[maxn];
bool vis[maxn];
map<int,int>mp;
int ans[maxn],tot,n;
int solve(int n)
{
mp.clear();
sort(a + 1,a + n + 1);
bool flag;
int cnt = 0;
for(int i = 1;i <= n;++i)
{
flag = false;
for(int j = a[i].R;j >= a[i].L;--j)
{
if(mp.find(j) != mp.end()) continue;
mp[j] = 1;
flag = true;
break;
}
if(flag) cnt++;
}
return cnt;
}
void cal(int pos,int limit)
{
if(limit > n || pos > tot) return ;
for(int i = n;i >= limit;--i)
{
// if(n - limit + 1 >= tot - i + 1)
// continue;
int m = 0;
for(int j = i;j <= n;++j)
a[++m] = node[j];
for(int j = 1;j < pos;++j)
a[++m] = node[ans[j]];
if(solve(m) == tot)
{
ans[pos] = i;
cal(pos + 1,i + 1);
return ;
}
}
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 1;i <= n;++i)
{
scanf("%d%d",&node[i].L,&node[i].R);
node[i].id = i;
}
for(int i = 1;i <= n;++i)
a[i] = node[i];
tot = solve(n);
for(int i = n - tot + 1;i >= 1;--i)
{
int m = 0;
for(int j = i;j <= n;++j)
a[++m] = node[j];
if(solve(m) == tot)
{
ans[1] = i;
cal(2,i + 1);
break;
}
}
sort(ans + 1,ans + tot + 1);
printf("%d\n",tot);
for(int i = 1;i <= tot;++i)
{
if(i > 1) printf(" ");
printf("%d",ans[i]);
}
puts("");
}
return 0;
}