贝叶斯定理是一个很经典的定理,虽然公式很简单,套用起来也很方便,但是还是缺乏一个直观的sense, 似乎很有道理却说不出来,这是一件很难受的事情,今天打算好好聊一聊贝叶斯定理,看看是否可以建立一个直观的感觉。
其实,画图是一个很好理解数学公式的方法,如果各种公式都能变成一个简单的图像存在人的大脑里,那数学学起来应该会轻松很多。既有数字能够入微的计算细节,又有图像能让人把握方向,就很完美了。
所以,我们可以考虑用几何概型来描述贝叶斯定理。不过这里还是随便编一个情景,不然用A啊B啊直接描述很难有带入感。
假设你想请女神去看电影,根据过往的经验,你知道,女神10天有4天都很忧郁,女神心情好的概率是0.6,当女神心情好的时候,有很大概率答应你,设为0.8吧,如果女神心情不好,那么就只有0.1的概率答应你。你发微信通知了女神,女神答应了!这个时候你想知道女神有多大可能性心情很好(这关系到你的预算,比如要不要买好吃的取悦女神)。
好,我们现在定义两个事件:
A: 女神心情好
B: 女神答应和你看电影
我们可以用面积来表示一个事件发生的频率,这个频率与总事件的数量的比值作为概率,这也是几何概型的思想。
看下面的图:
上面的图就可以来描述这些事件,虽然面积可能不准,但是不影响整体的概念。
其中,黑框的面积是所有事件的频率,我们记做 S S S,A的面积就是A事件发生的频率(也就是女神心情好的天数),记做 S A S_A SA, 同理, S B S_B SB就表示女神答应你去看电影的频率。再看图中紫色矩形的面积,这描述了女神心情又好又答应你看电影的频率,我们记做 S A ∩ B S_{A \cap B} SA∩B
我们知道,概率可以解释为某个事件发生的频率除以事件总数:
P ( A ) = S A S P(A) = \frac{S_A}{S} P(A)=SSA
P ( B ) = S B S P(B) = \frac{S_B}{S} P(B)=SSB