Canny边缘检测算法的原理与实现



Canny原理

Canny的原理就不细说了,冈萨雷斯的《数字图像处理》(中文第三版)P463~465讲解的比较清楚,主要就四个步骤:

  1. 对图像进行高斯滤波(由于实际实现的时候使用Sobel计算梯度,Sobel具有滤波作用,所以实际的实现省略了高斯滤波)
  2. 计算梯度大小和梯度方向
  3. 对梯度幅值图像进行非极大抑制
  4. 双阈值处理和连接性分析(通常这一步与非极大抑制并行,详见下面的代码)

下面重点说一下非极大抑制。


非极大抑制

对一幅图像计算梯度大小和梯度方向后,需要进行非极大抑制,一般都是通过计算梯度方向,沿着梯度方向,判断该像素点的梯度大小是否是极大值。这里主要说一下方向的判断。

图像坐标系

OpenCV中采用下面的坐标系
这里写图片描述
《数字图像处理》(中文第三版)这本书中图像坐标顺序与上述坐标系是相反的,看书的时候,注意一下坐标的顺序。

我们这里采用的图像坐标系与OpenCV一致。

本文中采用顺时针角度为正(OpenCV中规定逆时针为正)

这里写图片描述

边缘方向区间

非极大抑制中,通常将边缘量化为4个方向,水平,垂直,45°和-45°,实际中,通过定义一个方向角方位,在该方位内认为是某一方向的边缘,实现中,我们通过计算梯度方向的范围从而判断边缘的方向(边缘的方向与梯度方向垂直)。

这里写图片描述

由于边缘方向没有正负,梯度方向在-22.5°到+22.5和157.5°到-157.5°表示的是同一个边缘,所以这里梯度方向 θ \theta θ只考虑180°区间内。如上图所示:

  1. − 22.5 ° < θ < 22.5 ° -22.5°<\theta<22.5° 22.5°<θ<22.5°的时候,梯度方向为0°,也就是垂直边缘
  2. 22.5 ° < θ < 67.5 ° 22.5°<\theta<67.5° 22.5°<θ<67.5°的时候,梯度方向为45°,也就是135°边缘
  3. 其他两个方向依次类推

实现中,通过三角函数的性质计算,比如第一种情况,使用下面条件来判断
− 22.5 ° < θ < 22.5 ° -22.5°<\theta<22.5° 22.5°<θ<22.5°
=> t a n ( − 22.5 ° ) < t a n θ < t a n ( 22.5 ° ) tan(-22.5°)<tan\theta<tan(22.5°) tan(22.5°)<tanθ<tan(22.5°)
=> t a n ( − 22.5 ° ) < f y f x < t a n ( 22.5 ° ) tan(-22.5°)<{fy \over fx } <tan(22.5°) tan(22.5°)<fxfy<tan(22.5°)
=> f x ∗ t a n ( − 22.5 ° ) < f y < f x ∗ t a n ( 22.5 ° ) fx*tan(-22.5°)<{fy } <fx* tan(22.5°) fxtan(22.5°)<fy<fxtan(22.5°)
其中 f x 和 f y fx和fy fxfy表示x方向和y方向的偏导数。

其他三种情况读者可以自行推导。

判断出梯度方向后,就可以进行非极大值抑制了。还是以第一种情况为例,比如我计算出了P5这个像素点处的梯度方向为0°(180°),则这个时候,我们要判断的条件就是if(M(P5)>=M(P4)&&M(P5)>=M(P6)),也就是P5处的梯度值是否是极大值,其中M()表示该像素点的梯度大小。

这里写图片描述


Canny算法的实现(1.0版)

#define CANNY_SHIFT 16
#define TAN_225  (int)(0.4142135623730950488016887242097*(1 << CANNY_SHIFT));
#define TAN_675  (int)(2.4142135623730950488016887242097*(1 << CANNY_SHIFT));
void Canny1(const Mat &srcImage, Mat &dstImage, double lowThreshold, double highThreshold, int sizeOfAperture, bool L2)
{
    // 只支持灰度图
    CV_Assert(srcImage.type() == CV_8UC1);
    dstImage.create(srcImage.size(), srcImage.type());

    // L2范数计算边缘强度的时候,距离采用平方的方式,所以阈值也需要采用平方
    if (L2)
    {
        lowThreshold = std::min(32767.0, lowThreshold);
        highThreshold = std::min(32767.0, highThreshold);

        if (lowThreshold > 0) lowThreshold *= lowThreshold;
        if (highThreshold > 0) highThreshold *= highThreshold;
    }

    // 计算fx,fy,强度图
    Mat fx(srcImage.size(), CV_32SC1);
    Mat fy(srcImage.size(), CV_32SC1);
    Mat enlargedImage;
    Mat magnitudeImage(srcImage.rows + 2, srcImage.cols + 2, CV_32SC1);
    magnitudeImage.setTo(Scalar(0));
    copyMakeBorder(srcImage, enlargedImage, 1, 1, 1, 1, cv::BORDER_REPLICATE);
    int stepOfEnlargedImage = enlargedImage.cols;
    int stepOffx = fx.cols;
    int height = srcImage.rows;
    int width = srcImage.cols;
    uchar *rowOfEnlargedImage = enlargedImage.data + stepOfEnlargedImage + 1;
    int *rowOffx = (int *)fx.data;
    int *rowOffy = (int *)fy.data;
    int *rowOfMagnitudeImage = (int *)magnitudeImage.data + stepOfEnlargedImage + 1;
    for (int y = 0; y <= height - 1; ++y, rowOfEnlargedImage += stepOfEnlargedImage, rowOfMagnitudeImage += stepOfEnlargedImage, rowOffx += stepOffx, rowOffy += stepOffx)
    {
        uchar *colOfEnlargedImage = rowOfEnlargedImage;
        int *colOffx = rowOffx;
        int *colOffy = rowOffy;
        int *colOfMagnitudeImage = rowOfMagnitudeImage;
        for (int x = 0; x <= width - 1; ++x, ++colOfEnlargedImage, ++colOffx, ++colOffy, ++colOfMagnitudeImage)
        {
            // fx
            colOffx[0] = colOfEnlargedImage[1 - stepOfEnlargedImage] + 2 * colOfEnlargedImage[1] + colOfEnlargedImage[1 + stepOfEnlargedImage] -
                colOfEnlargedImage[-1 - stepOfEnlargedImage] - 2 * colOfEnlargedImage[-1] - colOfEnlargedImage[-1 + stepOfEnlargedImage];

            // fy
            colOffy[0] = colOfEnlargedImage[stepOfEnlargedImage - 1] + 2 * colOfEnlargedImage[stepOfEnlargedImage] + colOfEnlargedImage[stepOfEnlargedImage + 1] -
                colOfEnlargedImage[-stepOfEnlargedImage - 1] - 2 * colOfEnlargedImage[-stepOfEnlargedImage] - colOfEnlargedImage[-stepOfEnlargedImage + 1];

            // 计算边缘强度,由于只是用于比较,为了加快速度,只计算平方和
            if (L2)
            {
                colOfMagnitudeImage[0] = colOffx[0] * colOffx[0] + colOffy[0] * colOffy[0];
            }
            else
            {
                colOfMagnitudeImage[0] = std::abs(colOffx[0]) + std::abs(colOffy[0]);
            }

        }
    }


    // 非极大抑制,同时标记图做标记,双阈值处理
    //   0 - 可能是边缘
    //   1 - 不是边缘
    //   2 - 一定是边缘
    Mat labelImage(srcImage.rows + 2, srcImage.cols + 2, CV_8UC1);
    memset(labelImage.data, 1, labelImage.rows*labelImage.cols);
    rowOffx = (int *)fx.data;
    rowOffy = (int *)fy.data;
    rowOfMagnitudeImage = (int *)magnitudeImage.data + stepOfEnlargedImage + 1;
    uchar *rowOfLabelImage = labelImage.data + stepOfEnlargedImage + 1;
    queue<uchar*> queueOfEdgePixel;
    for (int y = 0; y <= height - 1; ++y, rowOfMagnitudeImage += stepOfEnlargedImage, rowOffx += stepOffx, rowOffy += stepOffx, rowOfLabelImage += stepOfEnlargedImage)
    {
        int *colOffx = rowOffx;
        int *colOffy = rowOffy;
        int *colOfMagnitudeImage = rowOfMagnitudeImage;
        uchar *colOfLabelImage = rowOfLabelImage;
        for (int x = 0; x <= width - 1; ++x, ++colOffx, ++colOffy, ++colOfMagnitudeImage, ++colOfLabelImage)
        {
            int fx = colOffx[0];
            int fy = colOffy[0];

            // 该像素点才有可能是边缘点
            if (colOfMagnitudeImage[0] > lowThreshold)
            {
                // 非极大抑制
                fy = fy*(1 << CANNY_SHIFT);

                int tan225 = fx * TAN_225;
                int tan675 = fx * TAN_675;

                // 梯度方向0
                if (fy>-1 * tan225 && fy < tan225)
                {
                    // 极大值,有可能是边缘
                    if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[-1] && colOfMagnitudeImage[0] >= colOfMagnitudeImage[1])
                    {
                        // 大于高阈值,是边缘,标记为2
                        if (colOfMagnitudeImage[0] > highThreshold)
                        {
                            // 进入队列,并设置标记
                            colOfLabelImage[0] = 2;
                            queueOfEdgePixel.push(colOfLabelImage);
                        }
                        else
                        {
                            // 有可能是边缘,标记为0
                            colOfLabelImage[0] = 0;

                        }
                    }
                }

                // 梯度方向45
                if (fy > tan225&&fy < tan675)
                {
                    // 极大值,有可能是边缘
                    if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[stepOfEnlargedImage + 1] && colOfMagnitudeImage[0]  >= colOfMagnitudeImage[-stepOfEnlargedImage - 1])
                    {
                        // 大于高阈值,是边缘,标记为2
                        if (colOfMagnitudeImage[0] > highThreshold)
                        {
                            // 进入队列,并设置标记
                            colOfLabelImage[0] = 2;
                            queueOfEdgePixel.push(colOfLabelImage);
                        }
                        else
                        {
                            // 有可能是边缘,标记为0
                            colOfLabelImage[0] = 0;

                        }

                    }

                }

                // 梯度方向90
                if (fy>tan675 || fy<-tan675)
                {
                    // 极大值,有可能是边缘
                    if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[stepOfEnlargedImage] && colOfMagnitudeImage[0] >= colOfMagnitudeImage[-stepOfEnlargedImage])
                    {
                        // 大于高阈值,是边缘,标记为2
                        if (colOfMagnitudeImage[0] > highThreshold)
                        {
                            // 进入队列,并设置标记
                            colOfLabelImage[0] = 2;
                            queueOfEdgePixel.push(colOfLabelImage);
                        }
                        else
                        {
                            // 有可能是边缘,标记为0
                            colOfLabelImage[0] = 0;

                        }

                    }

                }

                // 梯度方向135
                if (fy >= -1 * tan675&&fy <= -1 * tan225)
                {
                    // 极大值,有可能是边缘
                    if (colOfMagnitudeImage[0] >=colOfMagnitudeImage[stepOfEnlargedImage - 1] && colOfMagnitudeImage[0]  >= colOfMagnitudeImage[-stepOfEnlargedImage + 1])
                    {
                        // 大于高阈值,是边缘,标记为2
                        if (colOfMagnitudeImage[0] > highThreshold)
                        {
                            // 进入队列,并设置标记
                            colOfLabelImage[0] = 2;
                            queueOfEdgePixel.push(colOfLabelImage);
                        }
                        else
                        {
                            // 有可能是边缘,标记为0
                            colOfLabelImage[0] = 0;

                        }

                    }

                }

            }
        }

    }

    // 连接性分析,这里采用队列实现
    while (!queueOfEdgePixel.empty())
    {
        uchar *m = queueOfEdgePixel.front();
        queueOfEdgePixel.pop();

        // 在8领域搜索
        if (!m[-1])
        {
            m[-1] = 2;
            queueOfEdgePixel.push(m - 1);
        }

        if (!m[1])
        {
            m[1] = 2;
            queueOfEdgePixel.push(m + 1);
        }
        if (!m[-stepOfEnlargedImage - 1])
        {
            m[-stepOfEnlargedImage - 1] = 2;
            queueOfEdgePixel.push(m - stepOfEnlargedImage - 1);
        }
        if (!m[-stepOfEnlargedImage])
        {
            m[-stepOfEnlargedImage] = 2;
            queueOfEdgePixel.push(m - stepOfEnlargedImage);
        }
        if (!m[-stepOfEnlargedImage + 1])
        {
            m[-stepOfEnlargedImage + 1] = 2;
            queueOfEdgePixel.push(m - stepOfEnlargedImage + 1);
        }
        if (!m[stepOfEnlargedImage - 1])
        {
            m[stepOfEnlargedImage - 1] = 2;
            queueOfEdgePixel.push(m + stepOfEnlargedImage - 1);
        }
        if (!m[stepOfEnlargedImage])
        {
            m[stepOfEnlargedImage] = 2;
            queueOfEdgePixel.push(m + stepOfEnlargedImage);
        }
        if (!m[stepOfEnlargedImage + 1])
        {
            m[stepOfEnlargedImage + 1] = 2;
            queueOfEdgePixel.push(m + stepOfEnlargedImage + 1);
        }
    }

    // 最后生成边缘图
    rowOfLabelImage = labelImage.data + stepOfEnlargedImage + 1;
    uchar *rowOfDst = dstImage.data;
    for (int y = 0; y <= height - 1; ++y, rowOfLabelImage += stepOfEnlargedImage, rowOfDst += stepOffx)
    {
        uchar *colOfLabelImage = rowOfLabelImage;
        uchar *colOfDst = rowOfDst;
        for (int x = 0; x <= width - 1; ++x, ++colOfDst, ++colOfLabelImage)
        {
            if (colOfLabelImage[0] == 2)
                colOfDst[0] = 255;
            else
            {
                colOfDst[0] = 0;
            }
        }
    }

}


Canny算法的实现(2.0版)

后来发现非极大抑制中梯度方向区间的计算可以使用绝对值求解,而且采用绝对值求解后,检测效果要好于1.0版本,修改后程序如下

#define CANNY_SHIFT 16
#define TAN_225  (int)(0.4142135623730950488016887242097*(1 << CANNY_SHIFT));
#define TAN_675  (int)(2.4142135623730950488016887242097*(1 << CANNY_SHIFT));
// 转为绝对值求解
void Canny2(const Mat &srcImage, Mat &dstImage, double lowThreshold, double highThreshold, int sizeOfAperture, bool L2)
{
	// 只支持灰度图
	CV_Assert(srcImage.type() == CV_8UC1);
	dstImage.create(srcImage.size(), srcImage.type());

	// L2范数计算边缘强度的时候,距离采用平方的方式,所以阈值也需要采用平方
	if (L2)
	{
		lowThreshold = std::min(32767.0, lowThreshold);
		highThreshold = std::min(32767.0, highThreshold);

		if (lowThreshold > 0) lowThreshold *= lowThreshold;
		if (highThreshold > 0) highThreshold *= highThreshold;
	}

	// 计算fx,fy,强度图
	Mat fx(srcImage.size(), CV_32SC1);
	Mat fy(srcImage.size(), CV_32SC1);
	Mat enlargedImage;
	Mat magnitudeImage(srcImage.rows + 2, srcImage.cols + 2, CV_32SC1);
	magnitudeImage.setTo(Scalar(0));
	copyMakeBorder(srcImage, enlargedImage, 1, 1, 1, 1, cv::BORDER_REPLICATE);
	int stepOfEnlargedImage = enlargedImage.cols;
	int stepOffx = fx.cols;
	int height = srcImage.rows;
	int width = srcImage.cols;
	uchar *rowOfEnlargedImage = enlargedImage.data + stepOfEnlargedImage + 1;
	int *rowOffx = (int *)fx.data;
	int *rowOffy = (int *)fy.data;
	int *rowOfMagnitudeImage = (int *)magnitudeImage.data + stepOfEnlargedImage + 1;
	for (int y = 0; y <= height - 1; ++y, rowOfEnlargedImage += stepOfEnlargedImage, rowOfMagnitudeImage += stepOfEnlargedImage, rowOffx += stepOffx, rowOffy += stepOffx)
	{
		uchar *colOfEnlargedImage = rowOfEnlargedImage;
		int *colOffx = rowOffx;
		int *colOffy = rowOffy;
		int *colOfMagnitudeImage = rowOfMagnitudeImage;
		for (int x = 0; x <= width - 1; ++x, ++colOfEnlargedImage, ++colOffx, ++colOffy, ++colOfMagnitudeImage)
		{
			// fx
			colOffx[0] = colOfEnlargedImage[1 - stepOfEnlargedImage] + 2 * colOfEnlargedImage[1] + colOfEnlargedImage[1 + stepOfEnlargedImage] -
				colOfEnlargedImage[-1 - stepOfEnlargedImage] - 2 * colOfEnlargedImage[-1] - colOfEnlargedImage[-1 + stepOfEnlargedImage];

			// fy
			colOffy[0] = colOfEnlargedImage[stepOfEnlargedImage - 1] + 2 * colOfEnlargedImage[stepOfEnlargedImage] + colOfEnlargedImage[stepOfEnlargedImage + 1] -
				colOfEnlargedImage[-stepOfEnlargedImage - 1] - 2 * colOfEnlargedImage[-stepOfEnlargedImage] - colOfEnlargedImage[-stepOfEnlargedImage + 1];

			// 计算边缘强度,由于只是用于比较,为了加快速度,只计算平方和
			if (L2)
			{
				colOfMagnitudeImage[0] = colOffx[0] * colOffx[0] + colOffy[0] * colOffy[0];
			}
			else
			{
				colOfMagnitudeImage[0] = std::abs(colOffx[0]) + std::abs(colOffy[0]);
			}

		}
	}


	// 非极大抑制,同时标记图做标记,双阈值处理
	//   0 - 可能是边缘
	//   1 - 不是边缘
	//   2 - 一定是边缘
	Mat labelImage(srcImage.rows + 2, srcImage.cols + 2, CV_8UC1);
	memset(labelImage.data, 1, labelImage.rows*labelImage.cols);
	rowOffx = (int *)fx.data;
	rowOffy = (int *)fy.data;
	rowOfMagnitudeImage = (int *)magnitudeImage.data + stepOfEnlargedImage + 1;
	uchar *rowOfLabelImage = labelImage.data + stepOfEnlargedImage + 1;
	queue<uchar*> queueOfEdgePixel;
	for (int y = 0; y <= height - 1; ++y, rowOfMagnitudeImage += stepOfEnlargedImage, rowOffx += stepOffx, rowOffy += stepOffx, rowOfLabelImage += stepOfEnlargedImage)
	{
		int *colOffx = rowOffx;
		int *colOffy = rowOffy;
		int *colOfMagnitudeImage = rowOfMagnitudeImage;
		uchar *colOfLabelImage = rowOfLabelImage;
		for (int x = 0; x <= width - 1; ++x, ++colOffx, ++colOffy, ++colOfMagnitudeImage, ++colOfLabelImage)
		{
			int fx = colOffx[0];
			int fy = colOffy[0];
			int abs_fx = std::abs(fx);
			int abs_fy = std::abs(fy);

			// 该像素点才有可能是边缘点
			if (colOfMagnitudeImage[0] > lowThreshold)
			{
				// 非极大抑制
				abs_fy = abs_fy << CANNY_SHIFT;

				int tan225 = abs_fx * TAN_225;
				int tan675 = abs_fx * TAN_675;

				// 梯度方向0°
				if (abs_fy< tan225)
				{
					// 极大值,有可能是边缘
					if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[-1] && colOfMagnitudeImage[0] >= colOfMagnitudeImage[1])
					{
						// 大于高阈值,是边缘,标记为2
						if (colOfMagnitudeImage[0] > highThreshold)
						{
							// 进入队列,并设置标记
							colOfLabelImage[0] = 2;
							queueOfEdgePixel.push(colOfLabelImage);
						}
						else
						{
							// 有可能是边缘,标记为0
							colOfLabelImage[0] = 0;

						}
					}
				}

				// 梯度方向90°
				if (abs_fy>tan675)
				{
					// 极大值,有可能是边缘
					if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[stepOfEnlargedImage] && colOfMagnitudeImage[0] >= colOfMagnitudeImage[-stepOfEnlargedImage])
					{
						// 大于高阈值,是边缘,标记为2
						if (colOfMagnitudeImage[0] > highThreshold)
						{
							// 进入队列,并设置标记
							colOfLabelImage[0] = 2;
							queueOfEdgePixel.push(colOfLabelImage);
						}
						else
						{
							// 有可能是边缘,标记为0
							colOfLabelImage[0] = 0;

						}

					}

				}

				// 梯度方向45°/-45°
				if (abs_fy > tan225&&abs_fy<tan675)
				{
					int s = (fy*fx) < 0 ? -1 : 1;
					// 极大值,有可能是边缘
					if (colOfMagnitudeImage[0] >= colOfMagnitudeImage[-stepOfEnlargedImage - s] && colOfMagnitudeImage[0]  >= colOfMagnitudeImage[stepOfEnlargedImage + s])
					{
						// 大于高阈值,是边缘,标记为2
						if (colOfMagnitudeImage[0] > highThreshold)
						{
							// 进入队列,并设置标记
							colOfLabelImage[0] = 2;
							queueOfEdgePixel.push(colOfLabelImage);
						}
						else
						{
							// 有可能是边缘,标记为0
							colOfLabelImage[0] = 0;

						}

					}

				}

			}
		}

	}

	// 连接性分析,这里采用队列实现
	while (!queueOfEdgePixel.empty())
	{
		uchar *m = queueOfEdgePixel.front();
		queueOfEdgePixel.pop();

		// 在8领域搜索
		if (!m[-1])
		{
			m[-1] = 2;
			queueOfEdgePixel.push(m - 1);
		}

		if (!m[1])
		{
			m[1] = 2;
			queueOfEdgePixel.push(m + 1);
		}
		if (!m[-stepOfEnlargedImage - 1])
		{
			m[-stepOfEnlargedImage - 1] = 2;
			queueOfEdgePixel.push(m - stepOfEnlargedImage - 1);
		}
		if (!m[-stepOfEnlargedImage])
		{
			m[-stepOfEnlargedImage] = 2;
			queueOfEdgePixel.push(m - stepOfEnlargedImage);
		}
		if (!m[-stepOfEnlargedImage + 1])
		{
			m[-stepOfEnlargedImage + 1] = 2;
			queueOfEdgePixel.push(m - stepOfEnlargedImage + 1);
		}
		if (!m[stepOfEnlargedImage - 1])
		{
			m[stepOfEnlargedImage - 1] = 2;
			queueOfEdgePixel.push(m + stepOfEnlargedImage - 1);
		}
		if (!m[stepOfEnlargedImage])
		{
			m[stepOfEnlargedImage] = 2;
			queueOfEdgePixel.push(m + stepOfEnlargedImage);
		}
		if (!m[stepOfEnlargedImage + 1])
		{
			m[stepOfEnlargedImage + 1] = 2;
			queueOfEdgePixel.push(m + stepOfEnlargedImage + 1);
		}
	}

	// 最后生成边缘图
	rowOfLabelImage = labelImage.data + stepOfEnlargedImage + 1;
	uchar *rowOfDst = dstImage.data;
	for (int y = 0; y <= height - 1; ++y, rowOfLabelImage += stepOfEnlargedImage, rowOfDst += stepOffx)
	{
		uchar *colOfLabelImage = rowOfLabelImage;
		uchar *colOfDst = rowOfDst;
		for (int x = 0; x <= width - 1; ++x, ++colOfDst, ++colOfLabelImage)
		{
			if (colOfLabelImage[0] == 2)
				colOfDst[0] = 255;
			else
			{
				colOfDst[0] = 0;
			}
		}
	}

}

实验结果

实验代码

int main(int argc, char *argv[])
{
	Mat srcImage = imread("D:/Image/Gray/Lena512.bmp", -1);
	Mat canny1,canny,canny2;
	Canny1(srcImage, canny1, 50, 150, 3, false);
	Canny2(srcImage, canny3, 50, 150, 3, false);
	Canny(srcImage, canny, 50, 150);
	imwrite("D:/Canny.bmp", canny);
	imwrite("D:/Canny1.bmp", canny1);
	imwrite("D:/Canny2.bmp", canny2);
	return 0;
}

使用的是标准的Lena图
这里写图片描述

OpenCV 的处理结果为:

这里写图片描述

Canny1 的结果:

这里写图片描述

Canny2 的结果:

这里写图片描述

结果可以看出,Canny1丢失了一些垂直边缘,改进后的Canny2与OpenCV处理结果基本一致。

完整工程见github项目:QQImageProcess_OpenCV
其中Canny边缘检测的实现在 Src/ImageProcess/Edge.h中的Canny_系列函数中。


2016-6-19 01:54:58
Last Updated: 2016-9-3 09:11:58


非常感谢您的阅读,如果您觉得这篇文章对您有帮助,欢迎扫码进行赞赏。
这里写图片描述

  • 10
    点赞
  • 88
    收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:技术黑板 设计师:CSDN官方博客 返回首页
评论 4

打赏作者

qianqing13579

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值