2023.9.30学习

2023.9.30学习

人工智能基础学习

b站课程(1-4节):

课程链接:https://www.bilibili.com/video/BV1884y1k7cv/?spm_id_from=333.337.search-card.all.click&vd_source=a820d895dafccb5130050f1d069bd977

Artificial intelligence

Intelligence: The capacity to learn and solve problems

Artificial intelligence: The simulation of human intelligence by machines

1. 如何simulation?

​ 输入信息 → 模型、信息处理优化、权重更新(自我学习) → 输出信息

2.人工智能实现方法

(1)符号学习(Symbolic learning)

​ 基于逻辑和规则,遵循if…then原则

​ 缺点:不能根据新场景动态优化认知

(2)机器学习(Machine learning)

​ 使用算法,从数据中学习(寻找规律、建立关系),实现自我优化和升级,对事件进行决策和预测

深度学习:模仿人类神经网络,建立模型,进行数据分析

机器学习,是实现人工智能的方法;深度学习,是实现机器学习的技术

3.python常用工具包

pandas:数据导入导出、快速索引

numpy:数组运算

matplotlib:Python绘图库

安装方法

(pyCharm软件内)File → settings → project → pyCharm interpreter → install package

代码示例

(1)matplotlib

import matplotlib
from matpolylib import pypolt as pyt
x = [1, 2, 3, 4, 5]
y = [3, 4, 5, 6, 7]
fig1 = pyt.figure(figsize=(5, 5))  # 创建图形实例,参数为5*5英寸
pyt.plot(x, y)  # plot()绘制数据的线性图
pyt.title('x - y')  # 设置图形标题
pyt.xlabel('x')
pyt.ylabel('y')  # 设置x、y坐标名称
pyt.show()

fig2 = pyt.figure(figsize=(10, 10))
pyt.scatter(x, y)  # scatter()绘制数据的散点图
pyt.show()

(2)numpy

import numpy as np
a = np.eye(5)  # 生成一个5*5单位矩阵
print(type(a))  # numpy.ndarray
print(a)

b = np.ones(5)  # 生成一个1*5元素为1的数组
print(b)

c = np.ones([5, 5])  # 生成一个5*5元素为1的矩阵
print(c)
print(c.shape)  # 打印c的维数 打印结果:(5, 5)

d = a + c
print(d)

(3)pandas

import pandas as pd
data = pd.read_csv('data.csv')  # 需要把.xlsx文件转换为.csv
print(type(data))  # pandas.core.frame.DataFrame
print(data)

x = data.loc[:, 'x']  # 取出x列的所有行数据
print(type(x))  # pandas.core.series.Series
print(x)
y = data.loc[:, 'y']  # 取出y列的所有行数据
print(y)

a = data.lot[:, 'x'][y > 10]  # 筛选取出y>10的所有x列数据
print(a)
# pandas数据和numpy数组转换
import numpy as np
data_array = np.array(data)  # 将data转换为numpy数组类型
print(data_array)

# 保存数据
data_new = data + 10
print(data_new)
print(data_new.head())  # 预览5条数据
# 与jupyter不同,jupyter可以直接写data_new.head()预览数据,而pycharm必须将其print出来,打印出来为5条数据
data_new.to_csv('data_new.csv')  # 保存为.csv文件(带索引)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值