2023.9.30学习
人工智能基础学习
b站课程(1-4节):
Artificial intelligence
Intelligence: The capacity to learn and solve problems
Artificial intelligence: The simulation of human intelligence by machines
1. 如何simulation?
输入信息 → 模型、信息处理 → 优化、权重更新(自我学习) → 输出信息
2.人工智能实现方法
(1)符号学习(Symbolic learning)
基于逻辑和规则,遵循if…then原则
缺点:不能根据新场景动态优化认知
(2)机器学习(Machine learning)
使用算法,从数据中学习(寻找规律、建立关系),实现自我优化和升级,对事件进行决策和预测
深度学习:模仿人类神经网络,建立模型,进行数据分析
机器学习,是实现人工智能的方法;深度学习,是实现机器学习的技术
3.python常用工具包
pandas:数据导入导出、快速索引
numpy:数组运算
matplotlib:Python绘图库
安装方法
(pyCharm软件内)File → settings → project → pyCharm interpreter → install package
代码示例
(1)matplotlib
import matplotlib
from matpolylib import pypolt as pyt
x = [1, 2, 3, 4, 5]
y = [3, 4, 5, 6, 7]
fig1 = pyt.figure(figsize=(5, 5)) # 创建图形实例,参数为5*5英寸
pyt.plot(x, y) # plot()绘制数据的线性图
pyt.title('x - y') # 设置图形标题
pyt.xlabel('x')
pyt.ylabel('y') # 设置x、y坐标名称
pyt.show()
fig2 = pyt.figure(figsize=(10, 10))
pyt.scatter(x, y) # scatter()绘制数据的散点图
pyt.show()
(2)numpy
import numpy as np
a = np.eye(5) # 生成一个5*5单位矩阵
print(type(a)) # numpy.ndarray
print(a)
b = np.ones(5) # 生成一个1*5元素为1的数组
print(b)
c = np.ones([5, 5]) # 生成一个5*5元素为1的矩阵
print(c)
print(c.shape) # 打印c的维数 打印结果:(5, 5)
d = a + c
print(d)
(3)pandas
import pandas as pd
data = pd.read_csv('data.csv') # 需要把.xlsx文件转换为.csv
print(type(data)) # pandas.core.frame.DataFrame
print(data)
x = data.loc[:, 'x'] # 取出x列的所有行数据
print(type(x)) # pandas.core.series.Series
print(x)
y = data.loc[:, 'y'] # 取出y列的所有行数据
print(y)
a = data.lot[:, 'x'][y > 10] # 筛选取出y>10的所有x列数据
print(a)
# pandas数据和numpy数组转换
import numpy as np
data_array = np.array(data) # 将data转换为numpy数组类型
print(data_array)
# 保存数据
data_new = data + 10
print(data_new)
print(data_new.head()) # 预览5条数据
# 与jupyter不同,jupyter可以直接写data_new.head()预览数据,而pycharm必须将其print出来,打印出来为5条数据
data_new.to_csv('data_new.csv') # 保存为.csv文件(带索引)