题目描述
给定一个长度为N的数列,A1, A2, … AN。
如果其中一段连续的子序列Ai, Ai+1, … Aj(i <= j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。
你能求出数列中总共有多少个K倍区间吗?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)
输出
输出一个整数,代表K倍区间的数目。
样例输入
5 2
1
2
3
4
5
样例输出
6
【分析】:1.区间首先想到的就是前缀和,暴力枚举区间验证的话超时。
2.我觉得这个题目的关键是取余这个和加减没有关系,可以先取余再求减法所以就有:区间【i,j】的和为sum【j】-sum【i-1】。
(sum【j】-sum【i-1】)%k=0,
sum【j】%k=sum【i-1】%k
所以只要求累加和的取余,并且把这种取余结果个数存在一个数组里面,每次都加一次,完了之后个数加一。
最后要再加上取余结果为0的个数,因为,如果sum%k==0的话除了和前面相等的组成满足条件的区间之外,从头到这个位置也是一个满足条件的区间,所以最后加上他们。
代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100005;
int a[maxn];
int vis[maxn];
int main()
{
ll n,k;
cin>>n>>k;
ll sum=0;
ll pre;
ll ans=0;
for(int i=0;i<n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
pre=(sum)%k;
ans+=vis[pre];
vis[pre]++;
}
cout<<ans+vis[0]<<endl;
}