问题描述
小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买 10 颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。
输入格式
两个正整数,表示每种包装中糖的颗数(都不多于1000)
输出格式
一个正整数,表示最大不能买到的糖数
样例输入1
4 7
样例输出1
17
样例输入2
3 5
样例输出2
7
题解
1.暴力做法,因为两个数都不超过1000所以答案不超过1000000;
因此枚举0~1000000每一个数,看是否能被m,n组成。
先对两个数取余,在一步一步加回来,加回来的期间,每次都判断一下会不会被另外一个数除尽。不能就更新答案。
2.应该是欧几里得扩展的推导结论:m*n-m-n;
代码
暴力写法:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int m,n;
scanf("%d%d",&m,&n);
int ans=-1;
for(int i=0;i<100005;i++)
{
int a=i%m;
int b=i%n;
int f=0;
while(a<=i)
{
if(a%n==0)
{
f=1;
break;
}
a+=m;
}
while(b<=i)
{
if(b%m==0)
{
f=1;
break;
}
b+=n;
}
if(f==0)
{
ans=max(ans,i);
}
}
cout<<ans<<endl;
}