每周一算法:负环判断

题目链接

负环

题目描述

给定一个 n n n 个点的有向图,请求出图中是否存在从顶点 1 1 1 出发能到达的负环。

负环的定义是:一条边权之和为负数的回路。

输入格式

本题单测试点有多组测试数据

输入的第一行是一个整数 T T T,表示测试数据的组数。对于每组数据的格式如下:

第一行有两个整数,分别表示图的点数 n n n 和接下来给出边信息的条数 m m m

接下来 m m m 行,每行三个整数 u , v , w u, v, w u,v,w

  • w ≥ 0 w \geq 0 w0,则表示存在一条从 u u u v v v 边权为 w w w 的边,还存在一条从 v v v u u u 边权为 w w w 的边。
  • w < 0 w < 0 w<0,则只表示存在一条从 u u u v v v 边权为 w w w 的边。

输出格式

对于每组数据,输出一行一个字符串,若所求负环存在,则输出 YES,否则输出 NO

样例 #1

样例输入 #1

2
3 4
1 2 2
1 3 4
2 3 1
3 1 -3
3 3
1 2 3
2 3 4
3 1 -8

样例输出 #1

NO
YES

提示

数据规模与约定

对于全部的测试点,保证:

  • 1 ≤ n ≤ 2 × 1 0 3 1 \leq n \leq 2 \times 10^3 1n2×103 1 ≤ m ≤ 3 × 1 0 3 1 \leq m \leq 3 \times 10^3 1m3×103
  • 1 ≤ u , v ≤ n 1 \leq u, v \leq n 1u,vn − 1 0 4 ≤ w ≤ 1 0 4 -10^4 \leq w \leq 10^4 104w104
  • 1 ≤ T ≤ 10 1 \leq T \leq 10 1T10
提示

请注意, m m m 不是图的边数。

算法思想

判断图中是否存在负环,需要先了解下面关于最短路的几个性质:

  • 对于边权为正的图,任意两个节点之间的最短路,不会经过重复的节点。
  • 对于边权为正的图,任意两个节点之间的最短路,不会经过重复的边。
  • 对于边权为正的图,任意两个节点之间的最短路,任意一条的节点数不会超过 n n n,边数不会超过 n − 1 n-1 n1

Bellman–Ford 算法

Bellman–Ford 算法是一种基于松弛(relax)操作的最短路算法,可以求出有负权的图的最短路,并可以对最短路不存在的情况进行判断。大名鼎鼎的「SPFA」,就是 Bellman–Ford算法的一种实现。

基本思想

Bellman–Ford算法所做的,就是不断尝试对图上每一条边进行松弛。每进行一轮循环,就对图上所有的边都尝试进行一次松弛操作,当一次循环中没有成功的松弛操作时,算法停止。

对于边 ( u , v ) (u,v) (u,v),Bellman–Ford算法中松弛操作对应下面的式子: d i s ( v ) = min ⁡ ( d i s ( v ) , d i s ( u ) + w ( u , v ) ) dis(v) = \min(dis(v), dis(u) + w(u, v)) dis(v)=min(dis(v),dis(u)+w(u,v))。尝试用 S → u → v S \to u \to v Suv(其中 S → u S \to u Su 的路径取最短路)这条路径去更新 v v v 点最短路的长度,如果这条路径更优,就进行更新。

每次循环的时间复杂度是 O ( m ) O(m) O(m),那么最多会循环多少次呢?

在最短路存在的情况下,由于一次松弛操作会使最短路的边数至少 + 1 +1 +1,而最短路的边数最多为 n − 1 n-1 n1,因此整个算法最多执行 n − 1 n-1 n1 轮松弛操作。故总时间复杂度为 O ( n m ) O(nm) O(nm)

但还有一种情况,如果从 S S S 点出发,抵达一个负环时,松弛操作会无休止地进行下去。对于最短路存在的图,松弛操作最多只会执行 n − 1 n-1 n1 轮,因此如果第 n n n 轮循环时仍然存在能松弛的边,说明从 S S S 点出发,能够抵达一个负环。

代码实现

struct Edge {
  int u, v, w;
};

vector<Edge> edge;

int dis[MAXN], u, v, w;
const int INF = 0x3f3f3f3f;
//节点数n,起点s
bool bellmanford(int n, int s) {
  memset(dis, 0x3f, sizeof(dis));
  dis[s] = 0;
  bool flag = false;  // 判断一轮循环过程中是否发生松弛操作
  for (int i = 1; i <= n; i++) {
    flag = false;
    for (int j = 0; j < edge.size(); j++) {
      u = edge[j].u, v = edge[j].v, w = edge[j].w;
      if (dis[u] == INF) continue;
      // 无穷大与常数加减仍然为无穷大
      // 因此最短路长度为 INF 的点引出的边不可能发生松弛操作
      if (dis[v] > dis[u] + w) {
        dis[v] = dis[u] + w;
        flag = true;
      }
    }
    // 没有可以松弛的边时就停止算法
    if (!flag) {
      break;
    }
  }
  // 第 n 轮循环仍然可以松弛时说明 s 点可以抵达一个负环
  return flag;
}

队列优化的Bellman–Ford

SPFA即 Shortest Path Faster Algorithm,即队列优化的Bellman–Ford。很多时候Bellman–Ford算法并不需要那么多无用的松弛操作, 只有上一次被松弛的结点,所连接的边,才有可能引起下一次的松弛操作。那么可以用队列来维护哪些结点可能会引起松弛操作,就能只访问必要的边了。

SPFA也可以用于判断 s s s点是否能抵达一个负环,只需记录最短路经过了多少条边,当经过了至少 n n n条边时,说明 s s s点可以抵达一个负环。

代码实现

struct edge {
  int v, w;
};

vector<edge> e[maxn];
int dis[maxn], cnt[maxn], vis[maxn];
queue<int> q;

bool spfa(int n, int s) {
  memset(dis, 0x3f, sizeof(dis));
  dis[s] = 0, vis[s] = 1;
  q.push(s);
  while (!q.empty()) {
    int u = q.front();
    q.pop(), vis[u] = 0;
    for (auto ed : e[u]) {
      int v = ed.v, w = ed.w;
      if (dis[v] > dis[u] + w) {
        dis[v] = dis[u] + w;
        cnt[v] = cnt[u] + 1;  // 记录最短路经过的边数
        if (cnt[v] >= n) return false;
        // 在不经过负环的情况下,最短路至多经过 n - 1 条边
        // 因此如果经过了多于 n 条边,一定说明经过了负环
        if (!vis[v]) q.push(v), vis[v] = 1;
      }
    }
  }
  return true;
}

虽然在大多数情况下SPFA跑得很快,但其最坏情况下的时间复杂度为 O ( n m ) O(nm) O(nm),将其卡到这个复杂度也是不难的,所以考试时要谨慎使用。在没有负权边时最好使用Dijkstra算法,在有负权边且题目中的图没有特殊性质时,若SPFA是标算的一部分,题目不应当给出Bellman–Ford算法无法通过的数据范围。

  • 7
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

少儿编程乔老师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值