P221分数表达式的值

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n;
	cin>>n;
	double ans=0.0;
	for(int i=1;i<=n;i++){
		if(i%2!=0)ans+=1.0/(1.0*i);
		else ans-=1.0/(1.0*i);
	}
	cout<<fixed<<setprecision(4)<<ans;
	return 0;
}

ans要用double!

保留4位小数输出:cout<<fixed<<setprecision(4)<<ans;

### 正态分布中P的计算 在统计学中,P用于衡量某个假设检验的结果显著性。对于正态分布而言,P通常通过标准正态分布表或软件工具获得。然而,在某些情况下,了解如何手动计算这些是有益的。 #### 单侧测试下基于Z分数的P计算 如果已知观测到的数据点\( X \),以及总体均\(\mu\) 和标准差\(\sigma\) ,那么可以先计算标准化后的变量 \( Z=\frac{X-\mu}{\sigma} \)[^1] 。接着,利用标准正态分布的概率密度函数 (PDF) 或累积分布函数(CDF), 可以找到小于等于给定z得面积比例作为单边左尾P;如果是右尾,则寻找大于特定z的部分: \[ P(Z<z)=Φ(z)\quad or\quad P(Z>z)=1−Φ(z) \] 其中\( Φ() \)表示CDF, 它代表的是随机变量取不超过指定数的可能性大小[^2] 。 #### 双侧测试下的P计算 当执行双侧检验时,即考虑两侧极端情况的发生几率之和作为最终P: \[ P(|Z|>|zobserved|)=2×min[P(Z<z_{observed}),P(Z>-z_{observed})]\] 这里的关键在于理解绝对符号内的表达式意味着无论实际观察到的方向是什么样的偏差(高于还是低于预期),都将被同等对待并计入总的风险水平内[^3] 。 ```python from scipy.stats import norm def calculate_p_value(x, mu=0, sigma=1): """Calculate the two-tailed p-value given a normal distribution.""" # Calculate standardized score z_score = abs((x - mu)/sigma) # Get one-sided probability from CDF and double it for two tails. p_val = 2 * min(norm.cdf(-z_score), 1-norm.cdf(z_score)) return round(p_val, 4) print(calculate_p_value(1.96)) # Output should be close to 0.05 which is commonly used threshold in hypothesis testing ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值