light-weight network
文章平均质量分 96
轻量级网络
怎么全是重名
开心就好,任何时刻你都有充足的理由保持乐观
不管当下如何,未来一定会有更糟糕的时刻
展开
-
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications(2017)
我们提出了MobileNets的高效模型,用于移动和嵌入式视觉应用。MobileNets基于流线型架构,使用深度可分离卷积来构建轻量级深度神经网络。我们引入了两个简单的全局超参数(宽度乘法器α和分辨率乘数ρ),它们可以有效地在延迟和准确性之间进行权衡。这些超参数允许模型构建者根据问题的约束为其应用程序选择合适大小的模型。我们在资源和精度权衡方面进行了广泛的实验,与其他流行的ImageNet分类模型相比,我们展示了强大的性能。原创 2023-12-10 17:38:47 · 102 阅读 · 0 评论 -
Searching for MobileNetV3(2019)
本文的目标是开发最好的移动计算机视觉架构,优化移动设备上的精度和延迟权衡。引入了(1)互补搜索技术,(2)适用于移动设置的新型高效非线性算法,(3)新型高效网络设计,(4)新型高效分割解码器原创 2023-12-20 11:59:05 · 173 阅读 · 0 评论 -
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices(2017)
ShuffleNet,轻量级NN原创 2023-12-11 10:49:48 · 133 阅读 · 0 评论 -
MnasNet: Platform-Aware Neural Architecture Search for Mobile(2019)
提出了一种自动移动神经架构搜索(MNAS)方法,与以前的方法的主要区别在于延迟感知的多目标奖励和新的搜索空间,实现了精度和延迟之间的最佳权衡原创 2023-12-19 21:59:45 · 390 阅读 · 0 评论 -
Pelee: A Real-Time Object Detection System on Mobile Devices(CVPR 2019)
深度可分离卷积并不是建立高效模型的唯一方法原创 2023-12-18 11:05:09 · 454 阅读 · 0 评论 -
MobileNetV2: Inverted Residuals and Linear Bottlenecks(待补,2018提交2019最后修改此前所有都以最后修改时间为准)
在本文中,我们描述了一种新的移动架构,,它提高了移动模型在多个任务和基准测试以及不同模型尺寸范围内的最新性能。我们还描述了在我们称为SSDLite的新框架中应用这些移动模型进行对象检测的有效方法。此外,我们还演示了如何通过DeepLabv3的简化形式(我们称之为mobile DeepLabv3)构建移动语义分割模型它是基于一个反向残余结构,其中的捷径连接是在薄瓶颈层之间。中间扩展层使用轻量级深度卷积来过滤作为非线性源的特征。此外,我们发现为了保持表征能力,在窄层中去除非线性是很重要的。原创 2023-12-11 17:49:36 · 142 阅读 · 2 评论