Machine Learning——wu
怎么全是重名
开心就好,任何时刻你都有充足的理由保持乐观
不管当下如何,未来一定会有更糟糕的时刻
展开
-
Machine Learning134-end(强化学习)(option labs后补充)
设置一个奖励函数,告诉它什么时候做的好什么时候做的不好,算法会自动找出如何选择好的动作。原创 2023-10-10 21:30:07 · 71 阅读 · 0 评论 -
Machine Learning119-133(注释课件)
nu:用户数nm:电影数r(i,j):用户j是否评价电影iy(i,j):用户j给电影i的评分,仅限于r(i,j)=1。原创 2023-10-09 21:18:46 · 84 阅读 · 0 评论 -
Machine Learning113-118(异常检测)
异常检测中:异常abnormal即y=1为正面例子,正常normal即y=0为负面例子,适用于少量正面例子和大量负面例子,试图寻找全新的正面例子即abnormal。一个是从异常集里找未来的全新异常,常用于Fraud每隔几个月就有全新欺诈企图,一个从正确集里判断未知例子与已知正例的相似度。监督学习则不同,此处normal为正面例子,从大量正面例子中确定全新例子是否是正例。原创 2023-10-08 20:26:32 · 86 阅读 · 0 评论 -
Machine Learning106-112(无监督学习-K-Means)
3.遍历结束后,重新计算K值,即计算K个簇的平均值作为新的质心。重复23直到质心不再发生变化或达到指定迭代次数。1.从样本中随机选取K个点作为簇质心。2.每个点都指向离它最近的簇质心。原创 2023-10-06 09:09:03 · 95 阅读 · 0 评论 -
Machine Learning92-104(决策树)
H(0.5)表示的是上一个节点的数据混乱度,这个案例里面是5只猫总共10只动物。原创 2023-10-05 19:06:07 · 64 阅读 · 0 评论 -
Machine Learning88-91(机器学习项目的完整周期)
即precision是。原创 2023-10-05 11:18:09 · 78 阅读 · 0 评论 -
Machine Learning80-88(切换了视频,集数略有不同)
some tips for how to add data for your applicationTransfer learning原创 2023-10-05 09:56:47 · 66 阅读 · 0 评论 -
Machine Learning69-79(optimize & diagnostic & regularization)
对于在训练集上高偏差的算法来说,增加训练数据的作用微乎其微that is欠拟合的时候增加数据量并不是一个好办法。原创 2023-10-04 19:48:32 · 104 阅读 · 0 评论 -
Machine Learning61-67(激活函数&分类)
Activation Functions不要在隐藏层使用线性激活函数Multi-class classification问题softmaxMulti-label classification问题原创 2023-10-04 15:46:47 · 62 阅读 · 0 评论 -
Machine Learning42-60(neural network,propagation,tensorflow)
原创 2023-10-04 14:10:52 · 81 阅读 · 0 评论 -
Machine Learning37-40(overfitting problem)
正则化( Regularization)的目的在于提高模型在未知测试数据上的泛化力,限制参数的大小,减少泛化误差,是解决过拟合的一种重要方法。原创 2023-10-03 19:31:24 · 76 阅读 · 0 评论 -
Machine Learning31-36(logistic regression)
原创 2023-10-03 17:01:19 · 70 阅读 · 0 评论 -
Machine Learning1-30(linear regression)
supervised learning:分类和回归,x->y。映射输入x到y,学习算法从正确答案中学习。原创 2023-10-03 15:30:06 · 81 阅读 · 0 评论