R-CNN
文章平均质量分 96
R-CNN系列论文
怎么全是重名
开心就好,任何时刻你都有充足的理由保持乐观
不管当下如何,未来一定会有更糟糕的时刻
展开
-
Light-Head R-CNN: In Defense of Two-Stage Object Detector(2017.11)
light-head设计能够在不影响计算速度的情况下显著提高检测结果原创 2023-12-06 11:34:03 · 103 阅读 · 0 评论 -
Libra R-CNN: Towards Balanced Learning for Object Detection(2019.4)
提出了Libra R-CN,它集成了三个新颖的组件:IoU平衡采样、平衡特征金字塔和平衡L1损耗,分别用于减少样本、特征和客观层面的不平衡原创 2023-11-10 17:10:13 · 1462 阅读 · 2 评论 -
R-CNN(CVPR2014)
在经典PASCAL VOC数据集上测量的对象检测性能在过去几年中趋于稳定,表现最好的方法是复杂的集成系统,通常将多个低级图像特征与高级上下文相结合。在本文中,我们提出了一种简单且可扩展的检测算法,相对于之前在VOC 2012上的最佳结果提高了30%以上的平均精度(mAP),达到53.3%的amAP。我们的方法结合了两个关键的见解:(1)人们可以将高容量卷积神经网络(cnn)应用于自下而上的区域建议,以定位和分割对象;(2)原创 2023-10-23 09:45:42 · 230 阅读 · 0 评论 -
R-FCN: Object Detection via Region-based Fully Convolutional Networks(2016.6)
我们提出了基于区域的全卷积网络,用于准确高效的目标检测。与之前基于区域的检测器(如Fast/Faster R-CNN[6,18])相比,我们的基于区域的检测器是完全卷积的,几乎所有的计算都是在整个图像上共享的。为了实现这一目标,我们提出了位置敏感分数映射*,以解决图像分类中的平移不变性和目标检测中的平移方差之间的困境**。因此,我们的方法可以自然地采用全卷积图像分类器骨架,例如最新的残差网络(ResNets)[9],用于对象检测。原创 2023-10-28 19:37:35 · 659 阅读 · 0 评论 -
Fast R-CNN(2015.9)
本文提出了一种快速区域卷积网络(Fast R-CNN)的目标检测方法。Fast R-CNN基于以前的工作(R-CNN,SPP-net),使用深度卷积网络有效地对对象提案进行分类。与以前的工作相比,Fast R-CNN采用了几项创新来提高训练和测试速度,同时也提高了检测精度。原创 2023-10-25 09:33:11 · 115 阅读 · 0 评论 -
Faster R-CNN(2016.1)
最先进的目标检测网络依赖于区域生成算法来假设目标位置。SPPnet[1]和Fast R-CNN[2]等技术的进步减少了这些检测网络的运行时间,使区域生成计算成为瓶颈。在这项工作中,我们引入了一个区域生成网络(RPN),它与检测网络共享全图像卷积特征,从而实现几乎无成本的区域生成Region Proposal Network(RPN)是一个全卷积网络,它同时预测物体边界和物体在每个位置的得分。RPN经过端到端训练,生成高质量的候选框区域,用于Fast R-CNN的检测。原创 2023-10-26 10:15:06 · 107 阅读 · 0 评论 -
SSD: Single Shot MultiBox Detector(2016.11)
我们提出了一种使用单个深度神经网络检测图像中物体的方法,将边界框的输出空间离散为一组默认框,每个特征图位置具有不同的长宽比和尺度,我们的方法命名为SSD。在预测时,网络为每个默认框中每个对象类别的存在生成分数,并对框进行调整以更好地匹配目标形状。此外,该网络结合了来自不同分辨率的多个特征映射的预测,以自然地处理各种大小的对象。相对于需要目标候选框的方法,SSD是简单的,因为它完全消除了候选框生成和随后的像素或特征重新采样阶段。原创 2023-10-27 16:18:00 · 110 阅读 · 0 评论 -
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(2015.4)
现有的深度卷积神经网络(cnn)需要固定大小的输入图像(例如224×224),这种“人为的”要求,可能会降低任意大小/比例的图像或子图像的识别精度。我们为网络配备了另一种池化策略,即“空间金字塔池化”,以消除上述要求。新的网络结构被称为SPP-net,无论图像大小/比例如何,都可以生成固定长度的表示,金字塔池对物体变形也具有鲁棒性。有了这些优点,SPP-net应该在总体上改进所有基于cnn的图像分类方法。原创 2023-10-23 16:03:47 · 139 阅读 · 0 评论