PyTorch的nn.Linear()
是用于设置网络中的全连接层的,需要注意的是全连接层的输入与输出都是二维张量,一般形状为[batch_size, size]
,不同于卷积层要求输入输出是四维张量。其用法与形参说明如下:
in_features
指的是输入的二维张量的大小,即输入的[batch_size, size]
中的size
。
out_features
指的是输出的二维张量的大小,即输出的二维张量的形状为[batch_size,output_size]
,当然,它也代表了该全连接层的神经元个数。
从输入输出的张量的shape角度来理解,相当于一个输入为[batch_size, in_features]
的张量变换成了[batch_size, out_features]
的输出张量。
用法示例:
import torch as t
from torch import nn
# in_features由输入张量的形状决定,out_features则决定了输出张量的形状
connected_layer = nn.Linear(in_features = 64*64*3, out_features = 1)
# 假定输入的图像形状为[64,64,3]
input = t.randn(1,64,64,3)
# 将四维张量转换为二维张量之后,才能作为全连接层的输入
input = input.view(1,64*64*3)
print(input.shape)
output = connected_layer(input) # 调用全连接层
print(output.shape)
这段代码运行结果为:
input shape is %s torch.Size([1, 12288])
output shape is %s torch.Size([1, 1])
import torch
x = torch.randn(128, 20) # 输入的维度是(128,20)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)
print('m.weight.shape:\n ', m.weight.shape)
print('m.bias.shape:\n', m.bias.shape)
print('output.shape:\n', output.shape)
# ans = torch.mm(input,torch.t(m.weight))+m.bias 等价于下面的
ans = torch.mm(x, m.weight.t()) + m.bias
print('ans.shape:\n', ans.shape)
print(torch.equal(ans, output))
m.weight.shape:
torch.Size([30, 20])
m.bias.shape:
torch.Size([30])
output.shape:
torch.Size([128, 30])
ans.shape:
torch.Size([128, 30])
True
为什么 m.weight.shape = (30,20)?
答:因为线性变换的公式是:
先生成一个(30,20)的weight,实际运算中再转置,这样就能和x做矩阵乘法了