机器学习
qing101hua
在校大学生
展开
-
动态规划--学习笔记
动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。举例:线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济ACM第1132题)等;原创 2016-01-22 14:04:43 · 486 阅读 · 0 评论 -
凸优化和非凸优化
数学中最优化问题的一般表述是求取,使,其中是n维向量,是的可行域,是上的实值函数。凸优化问题是指是闭合的凸集且是上的凸函数的最优化问题,这两个条件任一不满足则该问题即为非凸的最优化问题。其中,是 凸集是指对集合中的任意两点,有,即任意两点的连线段都在集合内,直观上就是集合不会像下图那样有“凹下去”的部分。至于闭合的凸集,则涉及到闭集的定义,而闭集的定义又基于开集,比较抽象,不赘述,这里转载 2016-01-23 16:16:01 · 9245 阅读 · 2 评论 -
和机器学习和计算机视觉相关的数学
1. 线性代数 (Linear Algebra):我想国内的大学生都会学过这门课程,但是,未必每一位老师都能贯彻它的精要。这门学科对于Learning是必备的基础,对它的透彻掌握是必不可少的。我在科大一年级的时候就学习了这门课,后来到了香港后,又重新把线性代数读了一遍,所读的是Introduction to Linear Algebra (3rd Ed.) by Gilber转载 2016-01-23 16:32:01 · 818 阅读 · 0 评论 -
深度学习史上最全总结(文末有福利)
深度学习(Deep Learning),这是一个在近几年火遍各个领域的词汇,似乎所有的算法只要跟它扯上关系,瞬间就显得高大上起来。但其实,从2006年Hinton在Science上的论文算起,深度学习发展至今才不到十年。 在这短短几年时间里,深度学习颠覆了语音识别、图像分类、文本理解等众多领域的算法设计思路,渐渐形成了一种从训练数据出发,经过一个端到端(end-to-end)的模型,然后直接输转载 2016-10-25 18:38:22 · 1239 阅读 · 0 评论 -
深度学习模型之各种caffe版本(Linux和windows)的网址和配置
caffe官网:http://caffe.berkeleyvision.org/1.最原始的最开始版本:伯克利BVLC版https://github.com/BVLC/caffe主要在Linux上运行,有matlab和Python接口傻瓜都能学会的配置教程:Caffe+Ubuntu14.04+CUDA6.5新手安装配置指南:http://www.转载 2016-10-26 16:05:23 · 1522 阅读 · 0 评论 -
[学习笔记]实时SLAM的未来及深度学习与SLAM对比
实时SLAM的未来及深度学习与SLAM对比The Future of Real-Time SLAM and Deep Learning vs SLAM学习笔记作者:家辉, 日期:2016-07-10 CSDN博客: http://blog.csdn.net/gobitan/本文是作者(Tombone)对2015年12月18日计算机视觉国际会议实时SLAM小组转载 2016-12-01 14:49:41 · 574 阅读 · 0 评论