一些数学公式证明

1. 最小二乘问题的几种证法

1.1

考虑最小二乘问题: min(\left \| AX-b \right \|),AX表示在A线性空间中的一组线性组合而成的一个向量,使其到b向量距离最短,由于最小二乘是超定方程,所以b向量维度比AX维度高的,什么时候取到最短,当且仅当(b-AX)\perp A时,如图所示:

b-AX垂直于A的向量空间,则有:A^T(b-AX)=A^Tb-A^TAX=0

得证:X=(A^TA)^{-1}A^Tb 

1.2 

\left \| AX-b \right \|^2=(AX-b)^T(AX-b)=X^TA^TAX-X^TA^Tb-b^TAX+b^Tb

取到极值时,倒数为0

再根据矩阵求导法则 (X^TA)^{'}=(A^TX)^{'}=A:

2A^TAX-2A^Tb=0,得证

2. 为什么海森矩阵半正定不能确定最小值

因为f(x+\delta x)\approx f(x) + f^{'}(x)x+\frac{1}{2}f^{''}(x)x,由于在极值处f^{'}(x)值为0,因此,f(x)是否时极值取决于f^{''}(x)的符号,当f^{''}(x)也为0时,就要取决于更高次的导数了,因此半正定无法确定最小值。反之,如果f^{''}(x)为正定矩阵,则f(x)肯定在x处取得最小值

3. 样本方差为什么是s^2=\frac{n-1}{n}\sigma^2

证明:

E(s^2)=E(\frac{1}{n}\sum (x_i-\bar{x})^2)=E(\frac{1}{n}\sum [(x_i-u)-(\bar{x}-u)]^2)

=E(\frac{1}{n}\sum [(x_i-u)^2-2(x_i-u)(\bar{x}-u)+(\bar{x}-u)^2])=E(\frac{1}{n}[n\sigma^2-n(\bar{x}-u)^2])

又因为

\bar{x}=\frac{1}{n}(x_0-u)+\frac{1}{n}(x_1-u)+...+\frac{1}{n}(x_i-u)

所以,根据泰勒公式及协方差传播定律有:

E(\bar{x}-u)^2=D(\bar{x})=\frac{1}{n^2}\sigma^2+\frac{1}{n^2}\sigma^2+...+\frac{1}{n^2}\sigma^2=\frac{1}{n}\sigma^2

带入上式得:

E(s^2)=\frac{n-1}{n}\sigma^2

4. 李代数伴随矩阵证明

To expand on the existing answer: for me the tricky part was actually going from eq. 23 to eq. 24. There's probably an easier way to see it, but here's how I did it.

Recall that for a vector uu, the matrix u×u× is defined as the linear transformation

u×::v↦u×v.u×::v↦u×v.

So the identity R⋅ω×⋅R−1=(Rω)×R⋅ω×⋅R−1=(Rω)× can be intuitively interpreted as "[unrotating, then crossing with ωω, then rotating] is the same as [crossing with a rotated ωω]". We can prove this identity by letting the RHS of the identity act upon an arbitrary vector vv:

(Rω)×v=(Rω)×v=(Rω)×(RR−1v)=R[ω×(R−1v)]=Rω×R−1v,(Rω)×v=(Rω)×v=(Rω)×(RR−1v)=R[ω×(R−1v)]=Rω×R−1v,

where we have used the fact that for any rotation matrix UU and vectors a,ba,b we have

(Ua)×(Ub)=U(a×b)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 洛必达定理可以用数学归纳法证明:设$P_1, P_2,……,P_n$是任意的$n$边形,$a_1, a_2,……,a_n$是$P_1, P_2,……,P_n$的边长,若$P_1, P_2,……,P_n$的面积之和为$S$,那么:$\sum_{i=1}^n a_i^2 = 4S$ ### 回答2: 洛必达定理是一种用于求解极限的方法,它可以用数学公式证明。为了简化问题,我们假设要证明的极限为 $\lim_{x \to a} \frac{f(x)}{g(x)}$,其中 $a$ 可能为实数或无穷大。 首先,我们假设 $f(x)$ 和 $g(x)$ 是在 $a$ 的某个邻域内可导的函数。根据洛必达定理,如果 $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ 或 $\pm \infty$,那么我们可以通过求导来求解极限。 我们将 $f(x)$ 和 $g(x)$ 的导数分别表示为 $f'(x)$ 和 $g'(x)$。根据导数定义,我们有: $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x-a}}{\frac{g(x) - g(a)}{x-a}}$ 由于假设 $f(x)$ 和 $g(x)$ 在 $a$ 的某个邻域内可导,我们可以将其分子和分母分别表示为 $f'(a)$ 和 $g'(a)$,得到: $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}$ 这就证明了洛必达定理。 需要注意的是,洛必达定理并不适用于所有情况,只有当满足一定条件时才能使用。在具体应用中,我们需要对给定的函数进行分析,然后根据洛必达定理来判定是否可以用此定理求解极限。 ### 回答3: 洛必达定理是解决极限问题的重要工具。设有一个函数f(x)和一个函数g(x),其中f(x)和g(x)在某个点a处都为0或者都无穷大。当g(x)在a点的导数存在且不为0时,我们可以使用洛必达定理求解f(x)/g(x)在x趋近于a时的极限。 根据洛必达定理,当f(x)和g(x)在a点的极限都为0或者无穷大时,如果f'(x)/g'(x)的极限存在,那么f(x)/g(x)的极限也存在,且等于f'(x)/g'(x)的极限。 为了证明洛必达定理,我们先假设f(x)和g(x)在a点的极限都为0。根据导数的定义,g'(x) = lim[h→0](g(x+h)-g(x))/h。由于g(x)在a点的极限为0,所以g(x+h)-g(x)在h趋近于0时也趋近于0。因此,我们有g'(x) = lim[h→0](g(x+h)-g(x))/h = 0。同样地,我们可以得到f'(x) = lim[h→0](f(x+h)-f(x))/h = 0。 接下来,我们计算f'(x)/g'(x)的极限。根据定义,f'(x)/g'(x) = [lim[h→0](f(x+h)-f(x))/h] / [lim[h→0](g(x+h)-g(x))/h]。由于f'(x)和g'(x)的极限都为0,我们可以将此式化简为0/0的形式。 根据洛必达定理,当函数f(x)/g(x)在x趋近于a时的极限存在,且等于f'(x)/g'(x)的极限。因此,我们可以得出结论:如果f(x)和g(x)在a点的极限都为0且满足g'(x) ≠ 0,那么f(x)/g(x)的极限也存在,且等于f'(x)/g'(x)的极限。 以上就是用数学公式证明洛必达定理的过程。洛必达定理的证明过程可能更加复杂,需要更深入的推导和分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神气爱哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值