JOHNSON算法:流水作业最优调度问题

JOHNSON算法用于解决两台机器M1和M2组成的流水线上的作业最优调度问题,目标是最小化从开始到所有作业完成的总时间。算法包括将作业分为AB和BA集合,分别按条件排序,然后连接两个集合的作业以形成最优调度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

已知 n n n 个作业 1 , 2 , . . . , n {1, 2, . . . , n} 1,2,...,n要在由两台机器 M 1 {M_1} M1 M 2 {M_2} M2 组成的流水线上完成加工。每个作业加工的顺序都是先在 M 1 {M_1} M1上加工,然后在 M 2 {M_2} M2上加工。 M 1 {M_1} M1 M 2 {M_2}

Johnson算法是一种用于流水作业调度的优化算法,特别适用于两台机器的流水作业调度问题。其主要目标是最小化总的完成时间。Johnson算法通过以下步骤来实现优化: 1. **确定任务序列**:将所有任务按照一定的规则排序,以便最小化总的完成时间。 2. **应用Johnson规则**:对于每个任务,计算其在两台机器上的处理时间,并根据这些时间确定任务的执行顺序。 以下是Johnson算法的具体步骤: 1. **初始化**:假设有n个任务,每个任务在机器A和机器B上的处理时间分别为a[i]和b[i]。 2. **找到最小处理时间**: - 在所有任务中,找到在机器A或机器B上处理时间最小的任务。 - 如果最小时间在机器A上,将该任务放在序列的最前面。 - 如果最小时间在机器B上,将该任务放在序列的最后面。 3. **更新任务列表**:将已安排的任务从任务列表中移除。 4. **重复步骤2和3**,直到所有任务都被安排。 5. **生成最终序列**:按照上述规则生成的序列即为最优的任务执行顺序。 ### 示例 假设有四个任务,任务在机器A和机器B上的处理时间如下: | 任务 | 机器A | 机器B | |------|-------|-------| | 1 | 3 | 2 | | 2 | 2 | 5 | | 3 | 1 | 4 | | 4 | 4 | 3 | 应用Johnson算法: 1. 找到最小处理时间:任务3在机器A上的处理时间为1,放到最前面。 2. 更新任务列表:任务3已安排,剩余任务为1, 2, 4。 3. 找到最小处理时间:任务2在机器A上的处理时间为2,放到最前面。 4. 更新任务列表:任务2已安排,剩余任务为1, 4。 5. 找到最小处理时间:任务1在机器B上的处理时间为2,放到最后面。 6. 更新任务列表:任务1已安排,剩余任务为4。 7. 任务4放在最后。 最终任务顺序为:3, 2, 4, 1。 ### Python实现 ```python def johnson_algorithm(tasks): n = len(tasks) sequence = [] a = [task[0] for task in tasks] b = [task[1] for task in tasks] while len(sequence) < n: min_time = min(a + b) if min_time in a: i = a.index(min_time) sequence.insert(0, tasks[i]) a[i] = b[i] = float('inf') else: i = b.index(min_time) sequence.append(tasks[i]) a[i] = b[i] = float('inf') return sequence tasks = [(3, 2), (2, 5), (1, 4), (4, 3)] optimal_sequence = johnson_algorithm(tasks) print("Optimal sequence:", [task for task, _ in optimal_sequence]) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值