职场上会有35岁危机吗?程序员年纪大了需要准备转行吗?这些问题都会困扰我们,最近我的一个同事真的转行了,从一个10年码农到一个菜鸟产品经理,跟大家分享一下这个经历。
转行的优缺点分析
两者区别
首先咱们先了解一下产品经理与程序员的区别,通俗的说,程序员就是写代码的,负责一个软件产品的实现,举个例子,程序员可以说是工地上垒砖砌房子的农民工。
而产品经理是干嘛的呢?不要觉得带个经理的名字就是领导,当然产品经理在程序员面前确实有发号命令的权利。
产品经理就是根据客户或者公司自己的规划想法,把这个想法转换成对应的产品模型,也就是说产品经理类似于工地上一栋楼的设计师,产品到底该有哪些功能,该怎么规划,一般都是产品经理设计的。
程序员日常受到的训练,都是穷举思维;要考虑清楚每一种情况,否则写的程序会出现大量bug。
而产品经理通常用螺旋式的思维规划产品的不同版本需要的功能。他们以小步快跑,快速迭代的思想去考虑投放市场的时间节点。
程序员是多的思维,产品经理日常在做减法。
①人工智能/大模型学习路线
②AI产品经理入门指南
③大模型方向必读书籍PDF版
④超详细海量大模型实战项目
⑤LLM大模型系统学习教程
⑥640套-AI大模型报告合集
⑦从0-1入门大模型教程视频
⑧AGI大模型技术公开课名额
转行优势
那么程序员转产品经理怎么样呢?其实优势也很多,是一个不错的选择,就好比一个具有丰富施工经验的垒墙工人,他盖的楼多了,后来你让他设计一个新的大楼出来,虽然可能细节上不足,但是凭借他之前的经验,还是可以实现的。
再比如说,一个经验丰富的演员,之前都是听从于导演的命令去演戏,后来他自己经验丰富了,要转型做导演,也是容易的啊,”演而优则导“,这样的例子很多的。
目前很多的产品经理并不懂开发,设计的产品功能其实在实现的时候,可能根本就完不成,也就是产品经理会存在"瞎设计,瞎指挥"的问题。
但是换成一个开发经验丰富的程序员去设计产品,什么功能可以实现,该怎么实现,他心里一清二楚,设计出来的产品反而更容易实现。
很多时候,一些简单的内容,你可以直接上手操作,甚至都不需要拜托程序。
你能更加好的理解程序,知道什么能做什么不能做,知道怎么设置deadline才合理。
一个好的程序员能顶两个好产品经理。
一个不好的程序员,能顶一个半产品经理。
转行劣势
一句话:你的思考方法,不是产品经理的思考方法
你会先思考,这个功能能否实现,而不是,这个功能对于产品来说有多少效果;程序员的思考是来自于自身,而产品经理却不得不去不断听从用户,并且思考用户说的到底哪些是对的,这是一个非常难甚至让人焦虑的转变。
然后,你会陷入到一个个具体的可以操作的功能中去,这是很多新手产品经理的问题。每学习到一个新的功能,你都会感觉到欣喜,就像一个好玩的玩具,然后想要重复实现。你已经走出了第一步,然后落入了一个坑之中。
直到最后,你才有可能慢慢站在全局角度去思考,去看待问题,这时候才开始是一个合格的产品经理。
但程序员很多转产品经理,心理关不好过。
- 这特性如何描述 vs 能不能做
程序员习惯性去用自己的能力判断一个特性能不能做,而不是如何描述。需要角色转换。
- 这特性如何实现 vs 用户是否需要
程序员习惯性判断一个特性如何去实现,而不是去判断用户是否需要这个特性
- 有技术难度 vs 有用户价值
程序员习惯去挑战有难度的需求,而不是用户真的需要的需求。
- 喜欢写代码 vs 喜欢沟通交流
程序员喜欢和代码打交道,但和人打交道要复杂很多
转行产品经理,需要考什么证吗?
相关的证书有很多,PMP、信息系统项目管理师、6sigma、CBAP、GPST CPM产品经理认证、GPST精益产品经理认证、TRIZ等等
个人认为,互联网领域证书没啥用,除非你是一些特殊技能岗位。
互联网产品经理,考验你的不是原型图画的有多溜,产品框架有多好看,核心考验的是产品经理对需求的沟通协调收集整理能力。
80%的时间在各方面沟通,20%时间才是设计画图,所以这也是为啥程序员很难转型产品经理的原因之一。
沟通协调除了考验一个人的为人处事能力,还要有市场用户思维,真正懂得客户所需,部门所想,老板所要,技术所工等等。
这也是为啥产品经理薪资一直居高不下的原因,因为其能力要求比较高。不是随便人可以胜任的,但是功夫不负有心人,是人做的岗位,总有人可以胜任。而胜任的绝对不是一张证书,而是真材实料的项目管理经验。
程序员如何转变成产品经理?
回答这个问题,需要明确什么样的产品经理,b端的产品经理、c端的产品经理、还是数据产品经理?不同产品经理的能力要求是不同的。
下面我们泛谈下我理解的努力方向:
-
搞清楚产品经理这个岗位的能力要求。正所谓先搞清楚目标在哪?下来结合自己的能力,找到不足的地方去学习。
-
做思维模式的转变。
-
学习市场、运营、营销等方面的知识。
-
提升自己沟通、协调、管理方面的能力。
-
增加自己信息量,包含行业的信息和国家政策方面的。
-
锻炼自己看问题本质的能力,抓住事情的本质,洞察人性的能力是产品经理的核心能力。是优秀产品经理与普通产品经理的最大区别。
经验总结
程序员转产品经理是完全可行尤其是高学历人员更是吃香,优势上面也说了很多,但是产品经理要求的能力太多,希望还是系统看一下资料然后系统的学习一下。
-
提高沟通能力,当程序员时,过于内向,不爱开口,但产品经理对沟通要求更高一些,因为要讲清楚产品需求;
-
产品策划思维,学一些产品的规划方法,提高产品思维。遇到一件产品时,经常思考,它的不足以及可借鉴的地方,久而久之,就有产品思维了;
-
懂些市场营销,好的产品,需要具备营销因素,毕竟产品是最终要卖出去的;
-
用户思维,多从用户的角度思考产品,千万不要从个人角度出发,除非你是乔布斯。
有道无术,术可成;有术无道,止于术
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓