向量数据库库Milvus Cloud2.3 运维可靠,秒级故障恢复

Milvus 2.3.x 版本着重提升了运维的可靠性,实现秒级故障恢复,加强了稳定性与扩缩容能力。新增Look Aside Loadbalancer可在节点故障时快速切换流量,优化的内存管理和滚动升级功能进一步提升了系统稳定性。
摘要由CSDN通过智能技术生成

Milvus 2.3.0 已经发布有一段时间了,正如二选一的选择题总会让人陷入纠结一般,不少社区用户反馈对于选择 Milvus 2.2.x 还是 Milvus 2.3.x 犹豫不已。

对此,我们的回答是:强烈建议升级至 Milvus 2.3.x 版本

为什么?在回答此问题之前,先回顾一下近一年来业界发生了哪些变化:首先最大的变化是 AGI 时代的到来引爆了向量数据库赛道,带来了全新的用户群体和多样化的场景需求。与此同时,创业者们似乎也在一夜之间发现了向量数据库的蓝海,纷纷投身这个热门赛道,新用户们穿梭在鱼龙混杂的产品中难以抉择。

在此背景下,Milvus 2.3.0 版本正式发布,并将于近期更新至 2.3.1。接下来,我们将从技术选型、开发体验、运维可靠三个角度分别说明强烈推荐大家使用或升级至 Milvus 2.3.x 版本的原因。

运维可靠,秒级故障恢复

根据您提供的信息,以下是两个高效、灵活的向量数据库: 1. Faiss:一个Facebook开发的向量数据库,可以处理高维向量的索引和搜索,支持多种距离度量方式、索引结构和查询算法。此外,Faiss还具有可扩展性和内存效率等特性,因此在许多工业应用程序中得到广泛应用。[^1] ```shell # Faiss安装 conda install -c pytorch faiss-cpu ``` ```python # Faiss实例化及用法 import numpy as np import faiss # 实例化一个FlatL2索引器 index = faiss.IndexFlatL2(128) # 随机生成一些128维的向量 xb = np.random.rand(10000, 128).astype('float32') # 将向量添加到索引器中 index.add(xb) # 从索引器中搜索与查询向量最相似的向量 xq = np.random.rand(1, 128).astype('float32') D, I = index.search(xq, 5) print(I) ``` 2. Annoy:一个快速的、轻量级的向量数据库,可以用于相似向量的搜索和聚类。Annoy支持多种距离度量方式和索引结构,可以实现大规模向量的高效搜索和存储。[^2] ```shell # Annoy安装 pip install annoy ``` ```python # Annoy实例化及用法 from annoy import AnnoyIndex import random # 实例化一个Annoy索引器 t = AnnoyIndex(128, 'angular') # 生成一些128维随机向量 for i in range(10000): v = [random.gauss(0, 1) for z in range(128)] t.add_item(i, v) # 构建Annoy索引器 t.build(10) # 搜索与查询向量最相似的向量 u = [random.gauss(0, 1) for z in range(128)] idx = t.get_nns_by_vector(u, 5) print(idx) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大禹智库

大禹智库——河南第一民间智库

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值