监督学习 VS 异常检测算法(含有多元高斯、协方差的概念)

数据集均为带有标签的数据集(y=1为异常数据,为正样本;y=0为正常的数据,为负样本)

1.本例参考Andrew  Ng的ML课件  


(1)异常检测算的注意事项:

    对于训练集里面都是负样本(也就是正常的样本),去用它来获得正态分布,对于验证集和测试集里面可以加入正样本,比如下面的分配比例:


    对于算法的评估:


        其中的是一个超参数,也就是出现什么的概率的一个阈值

 2.通常会将这个分布进行各种变换,调整为高斯分布

        比如使用取<1的某个数的次幂,或者取log等。

3.对于误差数据的分析

    可以利用之前的特征变量,进行某种组合的变换,得到新的特征,再去进行操作

4.使用多元高斯

    因为如果对于每个特征都是单独来进行考虑的话,均建立一个高斯模型,再去判断,它形成的高斯在水平面的投影很可能是一个圆形,但是有一些却必须需要椭圆形来表示他们之间的关系,所以需要建立多元高斯模型(这里就用到了协方差的东西)


这里的是协方差矩阵的意思,PCA主成分分析里面也用到了协方差矩阵的知识

5.单个高斯模型 VS 多元高斯模型

    一般情况下,使用最多的是单个的高斯模型。但是在捕获变量之间的联系的时候,还是使用多元高斯模型比较占优势


    如果协方差矩阵是奇异矩阵(不可逆)的话,有2种可能:m<n,或者特征之间具有线性关系(冗余特征)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值