数据集均为带有标签的数据集(y=1为异常数据,为正样本;y=0为正常的数据,为负样本)
1.本例参考Andrew Ng的ML课件
(1)异常检测算的注意事项:
对于训练集里面都是负样本(也就是正常的样本),去用它来获得正态分布,对于验证集和测试集里面可以加入正样本,比如下面的分配比例:
对于算法的评估:
其中的是一个超参数,也就是出现什么的概率的一个阈值
2.通常会将这个分布进行各种变换,调整为高斯分布
比如使用取<1的某个数的次幂,或者取log等。
3.对于误差数据的分析
可以利用之前的特征变量,进行某种组合的变换,得到新的特征,再去进行操作
4.使用多元高斯
因为如果对于每个特征都是单独来进行考虑的话,均建立一个高斯模型,再去判断,它形成的高斯在水平面的投影很可能是一个圆形,但是有一些却必须需要椭圆形来表示他们之间的关系,所以需要建立多元高斯模型(这里就用到了协方差的东西)
这里的是协方差矩阵的意思,PCA主成分分析里面也用到了协方差矩阵的知识
5.单个高斯模型 VS 多元高斯模型
一般情况下,使用最多的是单个的高斯模型。但是在捕获变量之间的联系的时候,还是使用多元高斯模型比较占优势
如果协方差矩阵是奇异矩阵(不可逆)的话,有2种可能:m<n,或者特征之间具有线性关系(冗余特征)