PIP 换源
windows
用户目录创建pip文件夹保存上诉代码为pip.ini
[global]
index-url = http://mirrors.aliyun.com/pypi/simple/
[install]
trusted-host = mirrors.aliyun.com
Linux
修改 ~/.pip/pip.conf (没有就创建一个), 内容如下(或者如上):
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
anaconda conda 换源
windows
1 添加清华源
命令行中直接使用以下命令
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
2 添加中科大源
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
conda config --set show_channel_urls yes
Linux
将以上配置文件写在~/.condarc
中 vim ~/.condarc
channels:
- https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
- https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: true
Anaconda中Python版本的管理
conda是anaconda下面的一个包,也是一个包管理工具。anaconda则是一个python发行版本,包含有conda在内的各种包。miniconda就是只包含conda和conda的依赖,对于其他包,可以用conda装。pip是python 包下载管理工具,conda的话不仅是python 包下载管理工具,还可以下载其他语言的包(比如R语言),当然conda和pip是可以一起用的。
Anaconda Navigtor :用于管理工具包和环境的图形用户界面,后续涉及的众多管理命令也可以在 Navigator 中手工实现。
Jupyter notebook :基于web的交互式计算环境,可以编辑易于人们阅读的文档,用于展示数据分析的过程。
qtconsole :一个可执行 IPython 的仿终端图形界面程序,相比 Python Shell 界面,qtconsole 可以直接显示代码生成的图形,实现多行代码输入执行,以及内置许多有用的功能和函数。
spyder :一个使用Python语言、跨平台的、科学运算集成开发环境。
4 如何在anaconda下改变python的版本
根据网页:http://python.jobbole.com/87522/
使用以下命令创建新环境:
conda create -n env_name list of packages
其中 -n 代表 name,env_name 是需要创建的环境名称,list of packages 则是列出在新环境中需要安装的工具包。
比如我现在的python版本是3.6,但是我想安装一个python 3.4的环境,则在anaconda prompt输入:
conda create -n py34 python=3.4
控制台会输出:
# To activate this environment, use
#
# $ conda activate py34
#
# To deactivate an active environment, use
#
# $ conda deactivate
现在激活这个新配置的环境:conda activate py34
输入python --version,可以看到
这时候打开anaconda navigator,发现多出来一个环境选择
所以,这样看来确实很方便,各个环境互相独立,都放在文件夹 D:\software\anaconda\envs 下:
还有,如果要删除我们配置的新环境,则:
conda env remove -n env_name
显示所有环境:
conda env list
当分享代码的时候,同时也需要将运行环境分享给大家,执行如下命令可以将当前环境下的 package 信息存入名为 environment 的 YAML 文件中。[6]
conda env export > environment.yaml
同样,当执行他人的代码时,也需要配置相应的环境。这时你可以用对方分享的 YAML 文件来创建一摸一样的运行环境。
conda env create -f environment.yaml
参考:
anaconda的python管理:https://blog.csdn.net/weixin_39278265/article/details/82982937
conda源更改:https://blog.csdn.net/jasonzhoujx/article/details/81130109?utm_source=blogxgwz0