汉诺塔游戏
在汉诺塔游戏中,我们发现可以将问题简化,这是一种利用递归解决问题的思路,我们不需要具体解决问题的方法是什么,但仍然可以解决该问题,因此这种方法思想简单,但计算复杂度会比较高。
- 假设现在我们有三个柱子,“X”,“Y”,“Z”,现在“X”柱子上有不同大小的64个盘子,要求将这64个盘子移到柱子“Z”上,注意事项为每次只能移动一个盘子并且移动过程中大盘子不能出现在小盘子的上面。
我们能够很自然的想到,
- 先把“X”上面63个盘子放到柱子“Y”上,此时要借助“Z”,
1.1 先将62个盘子放到“Z”上
1.2 再将底下第63个盘子放到“Y”上
1.3 最后将“Z”上的62个盘子移回到“Y”上
1.1.1 ……
1.1.2 ……
1.1.3 …… - 然后把“X”上的最大的那个盘子移到“Z”上,
- 最后把“Y”上的63个盘子借助“X”移动到“Z”。
3.1 先将“Y”上的62个盘子移动到“X”上
3.1.1 ……
3.1.2 ……
3.1.3 ……
3.2 再将第63个盘子从“Y”移动到“Z”上
3.3 最后将62个盘子从“X”移动到“Z”上
- 先把“X”上面63个盘子放到柱子“Y”上,此时要借助“Z”,
所以上述的过程我们并没有真正的把盘子怎么移写出来,但我们能够发现每次移动的时候,只要移到最后一个我们就可以让这次移动结束,而且,这个过程中每一步的逻辑都是一致的,基于此我们就可以利用递归的手段来解决这个汉诺塔问题。
代码实现
#include <stdio.h>
//其中n表示盘子的个数,“X”,“Y”,“Z”表示三个柱子
void move(int n, char x, char y, char z)
{
if (1 == n)
{
printf("%c-->%c",x,z);
}
else
{
move(n-1, x,z,y); //从x借助z移动到y
printf("%c-->%c",x,z);
move(n-1,y,x,z);//从y借助x移动到z
}
}
int main()
{
int n;
printf("输入要移动盘子的个数:\n");
scanf("%d",&n);
printf("移动步骤如下:\n");
move(n,"X","Y","Z");
return 0;
}