PYthon——plt.scatter各参数详解

 

最近开始学习Python编程,遇到scatter函数,感觉里面的参数不知道什么意思于是查资料,最后总结如下:

1、scatter函数原型

2、其中散点的形状参数marker如下:

3、其中颜色参数c如下:

4、基本的使用方法如下:

[python] view plain copy

  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. ax1.scatter(x,y,c = 'r',marker = 'o')  
  17. #设置图标  
  18. plt.legend('x1')  
  19. #显示所画的图  
  20. plt.show()  

结果如下:

5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:

(1)、不同大小

[python] view plain copy

  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. sValue = x*10  
  17. ax1.scatter(x,y,s=sValue,c='r',marker='x')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  

(2)、不同颜色

[python] view plain copy

  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. cValue = ['r','y','g','b','r','y','g','b','r']  
  17. ax1.scatter(x,y,c=cValue,marker='s')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  

结果:

(3)、线宽linewidths

[python] view plain copy

  1. #导入必要的模块  
  2. import numpy as np  
  3. import matplotlib.pyplot as plt  
  4. #产生测试数据  
  5. x = np.arange(1,10)  
  6. y = x  
  7. fig = plt.figure()  
  8. ax1 = fig.add_subplot(111)  
  9. #设置标题  
  10. ax1.set_title('Scatter Plot')  
  11. #设置X轴标签  
  12. plt.xlabel('X')  
  13. #设置Y轴标签  
  14. plt.ylabel('Y')  
  15. #画散点图  
  16. lValue = x  
  17. ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o')  
  18. #设置图标  
  19. plt.legend('x1')  
  20. #显示所画的图  
  21. plt.show()  

 

                     注:  这就是scatter基本的用法。

 

 

前端导出Excel下载可以通过以下步骤实现。首先,你需要准备一个Excel模板,可以使用HTML表格来创建模板。在模板中,你可以使用表格标签来定义Excel的结构和内容。\[1\]然后,在封装请求时,需要设置responseType为"blob",以确保返回的数据类型是二进制流。\[2\]接下来,你可以使用JavaScript来触发导出操作。可以在按钮的点击事件中调用一个函数,该函数将表格数据转换为Excel格式并触发下载操作。\[3\]在这个函数中,你可以使用JSON数据来填充Excel表格的内容。最后,将生成的Excel文件提供给用户进行下载。 #### 引用[.reference_title] - *1* *3* [前后端导出/下载excel方法](https://blog.csdn.net/snsHL9db69ccu1aIKl9r/article/details/93377280)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [前端实现导出下载excel文件(Blob数据类型)](https://blog.csdn.net/G_ing/article/details/128170853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值