Xgboost如何处理缺失值

Xgboost

Xgboost简介

Xgboost[1]是由陈天奇提出的一种集成学习方法,要想了解Xgboost,这里建议先了解决策树,再了解GBDT(Gradient boosting descent tree)即梯度提升树,再学习理解Xgboost。推荐学习方式,阅读[1]这篇论文,你将对Xgboost如何处理缺失值,以及模型复杂度控制有更加深刻的理解(注:对论文中正则化方式有疑问,可留言讨论)。

 

Xgboost缺失值处理

Xgboost如何处理缺失值呢,最简单直观的方式可以通过下面这个算法流程来表示。实际处理时,可以将缺失值设置成missing=-999或missing=-9999。

 

这里解释一下:这个算法流程图参考[1],是陈天奇在论文“XGBoost: A Scalable Tree Boosting System”中提出来的,通过自动学习,得出最优分裂方向。

在机器学习领域,也有很多其他缺失值处理的方式,这里大概列举一下,包括求均值,补0,插值的方法,one-hot编码等。

 

参考文献:

[1] T. Chen, C. Guestrin, "XGBoost: A Scalable Tree Boosting System" Acm Sigkdd International Conference on Knowledge Discovery & Data Mining, pp.785-794, 2016.点击打开链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值