【OpenCV人脸检测】开发了一个智能锁屏工具、人走自动锁屏

本文介绍了如何通过编程实现一个基于OpenCV的人脸检测系统,该系统可定时检测电脑前是否有人员,无人时自动锁屏,有人时唤醒。旨在提升职场中的信息安全和个人隐私保护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【🏠作者主页】:吴秋霖
【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究与开发工作!
【🌟作者推荐】:对爬虫领域以及JS逆向分析感兴趣的朋友可以关注《爬虫JS逆向实战》《深耕爬虫领域》
未来作者会持续更新所用到、学到、看到的技术知识!包括但不限于:各类验证码突防、爬虫APP与JS逆向分析、RPA自动化、分布式爬虫、Python领域等相关文章

1. 写在前面

  在职场中,我们经常会遇到这样的情况:由于各种原因离开电脑时忘记了锁屏!这时你可能正在浏览一些私密的内容,或者在打开聊天软件与亲朋好友交流。在公司这种人来人往的环境中,甚至可能有人在你的工位周围活动。如何防止他人无意中看到你的隐私对于我们程序员来说就变得很简单了

这不仅仅是关于信息安全的问题,更是关于保护个人隐私的重要一环

2. 设计思路

  为了解决这个问题,我们将实现一个小工具,通过调用摄像头不定时抓拍图片,再借助OpenCV做人脸识别检测,我们能够实时监测电脑前是否有人。检测到无人在电脑屏幕前则触发自动锁屏操作。而当有人回来入座时,系统又将自动检测并唤醒屏幕

当然,这个地方有更多的细节可以在后续功能中进行优化与升级,例如,我们可以添加人脸识别库,进行人脸特征提取与对比,提高识别精度!根据个人需求训练人脸模型,采集一些自己的图像来进行训练。最后在唤醒之前对人脸进行对比,是本人则唤醒,不是的话也可以抓拍一张…

另外也可以对用户在设备上的活动进行监测,如键盘的输入、鼠标的移动,以此来判断用户是否离开

在开始之前我们需要安装如下模块:

pip3 install opencv-python

OpenCV是迄今为止解决基于计算机视觉问题最流行的开源库之一,其下载量已超过1800万次,活跃的用户社区拥有47000名成员。OpenCV具备2500种优化算法,涵盖了一整套经典和最先进的计算机视觉以及机器学习算法,使其成为机器学习领域中最为重要的库之一

3. 人脸检测

人脸检测的一般步骤如下:为了实现精准的人脸检测,首先需构建人脸模型,获取可靠的人脸分类器。通常我们会使用网上公开的扩展包或已训练好的分类器。为此,将haarcascades与lbpcascades中相关的XML文件下载至本地,以备后续调用,为人脸检测提供必要的支持

下面我们做一个示例,使用Python+OpenCV实现单人脸检测,代码如下:

import cv2
import os

def face_detection(image):
    # 创建一个级联分类器,加载Haar特征的.xml分类器文件
    face_cascade_path = os.path.join(cv2.data.haarcascades, 'haarcascade_frontalface_default.xml')
    
    if not os.path.isfile(face_cascade_path):
        print("Error: Haarcascade file not found.")
        return

    face_detector = cv2.CascadeClassifier(face_cascade_path)

    # 多个尺度空间进行人脸检测,返回检测到的人脸区域坐标信息
    faces = face_detector.detectMultiScale(image=image, scaleFactor=1.1, minNeighbors=5)
    print('检测到的人脸信息如下:\n', faces)

    for x, y, w, h in faces:
        # 在原图像上绘制矩形标识
        cv2.rectangle(img=image, pt1=(x, y), pt2=(x+w, y+h), color=(0, 0, 255), thickness=2)

    cv2.imshow('result', image)

# 读取图像
src_path = os.path.join('Desktop', 'kunkun.png')
src = cv2.imread(src_path)

if src is None:
    print(f"Error: Could not read image from {src_path}")
else:
    cv2.imshow('input image', src)
    face_detection(src)

cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

4. 程序实现

首先,我们需要初始化摄像头并检测判断摄像头是否打开:

cap = cv2.VideoCapture(0)
if not cap.isOpened():
    print("Error: Could not open camera.")
    exit()

接下来,为了进行人脸检测,我们需要载入OpenCV的人脸检测模型:

face_cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
if not os.path.isfile(face_cascade_path):
    print("Error: Haarcascade file not found.")
    exit()

face_cascade = cv2.CascadeClassifier(face_cascade_path)
if face_cascade.empty():
    print("Error: Could not load haarcascade.")
    exit()

为了方便,我们创建了一个函数来检测人脸:

def detect_faces(frame):
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.1, 4)
    return faces

接着,我们需要根据不同系统执行不同命令,实现锁屏和唤醒屏幕的操作:

# 执行锁屏命令
def lock_screen(os_type):
    if os_type == 'windows':
        os.system('rundll32.exe user32.dll, LockWorkStation')
    elif os_type == 'mac':
        subprocess.run(['pmset', 'displaysleepnow'])

# 执行唤醒屏幕命令
def wake_screen():
    subprocess.run(['caffeinate', '-u', '-t', '1'])

最后,我们将以上所有的组件整合到一起,形成一个完整的程序,如下所示:

import cv2
import time
import os
import platform
import subprocess

# 常量定义
NO_PERSON_THRESHOLD = 3
SAVE_IMAGE_DELAY = 5
IMG_NAME = "face_photo.jpg"

# 检测操作系统
def detect_os():
    os_name = platform.system()
    if os_name == 'Windows':
        return 'windows'
    elif os_name == 'Darwin':
        return 'mac'
    else:
        return 'other'

# 执行锁屏命令
def lock_screen(os_type):
    if os_type == 'windows':
        os.system('rundll32.exe user32.dll, LockWorkStation')
    elif os_type == 'mac':
        subprocess.run(['pmset', 'displaysleepnow'])

# 执行唤醒屏幕命令
def wake_screen():
    subprocess.run(['caffeinate', '-u', '-t', '1'])

# 初始化摄像头
cap = cv2.VideoCapture(0)

# 载入OpenCV的人脸检测模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 无人状态计时器
no_person_timer = 0
# 是否保存图像的标志
save_image = False

# 检测操作系统类型
os_type = detect_os()

while True:
    ret, frame = cap.read()

    if not ret:
        break

    # 转换为灰度图像
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.1, 4)

    if len(faces) == 0:
        no_person_timer += 1
        if no_person_timer > NO_PERSON_THRESHOLD:
            lock_screen(os_type)
    else:
        no_person_timer = 0
        # 当检测到人脸时唤醒屏幕
        wake_screen()

        # 检测到人脸时保存当前帧
        if not save_image:
            cv2.imwrite(IMG_NAME, frame)
            print(f"Saved image: {IMG_NAME}")
            save_image = True

            # 延迟一定时间再继续保存,避免频繁保存
            cv2.waitKey(SAVE_IMAGE_DELAY * 1000)

    # 检测键盘输入,以退出程序
    key = cv2.waitKey(1) & 0xFF
    if key == 27:  # ESC键
        break

cap.release()
cv2.destroyAllWindows()

通过这个小工具,我们不仅可以提高电脑的安全性,还能够保护个人隐私,使我们的工作环境更加舒适。当然,用户可以根据个人需求对该工具进行进一步定制,使其更符合个性化的使用体验。在实际使用中,我们可以根据自己的需求进行调整和改进,以满足不同场景下的锁屏需求

赶紧试一试吧~~

好了,到这里又到了跟大家说再见的时候了。创作不易,帮忙点个赞再走吧。你的支持是我创作的动力,希望能带给大家更多优质的文章

OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像和视频处理任务设计,广泛应用于学术研究、工业应用以及个项目中。以下是关于OpenCV的详细介绍: 历史与发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及和商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区与支持:随着时间的推移,OpenCV吸引了全球众多开发者和研究员的参与,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献和支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、Android和iOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测与描述(如SIFT、SURF、ORB等)、物体识别与检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载与部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理和实时计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源与免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改和分发库及其源代码,无需担心版权问题。 架构与核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储和操作)、基本的图像和矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现与分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像和视频的显示、用户交互(如鼠标事件处理)以及简单的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式和捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)与描述符计算、特征匹配与对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入和运行预训练的深度学习模型,如卷积神经网络(CNN)。 应用领域 OpenCV广泛应用于: 科研与教育:作为计算机视觉教学和研究的基础工具OpenCV简化了算法原型开发与验证过程。 工业自动化:在视觉检测、机器导航、产品质量控制等工业场景中,OpenCV用于实时图像分析与决策。 安防监控:用于人脸识别、行检测、行为分析等智能监控系统。 医疗影像分析:在医疗领域,OpenCV可用于医学图像处理、病灶检测、诊断辅助等应用。 自动驾驶:在车辆视觉感知系统中,OpenCV用于道路标志识别、障碍物检测、车道线识别等任务。 多媒体应用:如图像编辑软件、AR/VR应用、游戏开发等,利用OpenCV进行图像和视频处理。 物联网与嵌入式系统:在资源受限的嵌入式设备上,OpenCV提供轻量级的计算机视觉解决方案。 学习与社区资源 OpenCV拥有丰富的官方文档、教程、示例代码以及活跃的开发者社区,包括GitHub、StackOverflow、官方论坛等,为学习和使用OpenCV提供了有力支持。此外,有许多书籍、在线课程、博客文章和研讨会专门讲解OpenCV的使用和计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像和视频处理任务所需的工具箱,其广泛的应用领域和活跃的社区支持使之成为计算机视觉领域不可或缺的开发工具
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吴秋霖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值