2023年图灵奖揭晓,你怎么看?

2023年图灵奖揭晓!

获得这届「计算机界诺贝尔奖」——ACM A.M.图灵奖的,是普林斯顿高等研究院数学学院的教授Avi Wigderson。

表彰的是Wigderson在计算理论领域的开创性贡献,特别是他对计算中随机性角色的重新定义,以及他在理论计算机科学领域数十年的引领。

最终,他将获得高达100万美元的奖金。

不仅如此,这一荣誉也使Avi Wigderson成为了,历史上第一位同时获得图灵奖和阿贝尔奖的人。

阿贝尔奖被视为数学领域的最高荣誉

Wigderson是普林斯顿高级研究院数学学院的Herbert H. Maass教授。

他在计算复杂性理论、算法与优化、随机性与密码学、并行与分布式计算、组合学和图论等领域均有突出贡献,并且在理论计算机科学与数学及科学的交叉领域中,也具有重要影响。

在此之前,Wigerson于2009年获得了哥德尔奖;2018年,因对计算机科学和数学理论的贡献(Institute for Advanced Study)当选ACM Fellow;并于2019年获得了高德纳奖。

他们成功地证明了,在一些广泛,一般来说,计算机是确定性系统——算法的指令集对任何特定输入都有唯一确定的计算过程和输出结果。

也就是说,确定性算法遵循一个可预测的模式。

然而,随机性则不同,它没有明确的模式,也无法预测事件或结果的发生。

鉴于我们所处的世界似乎充斥着随机事件(如天气系统、生物和量子现象等),计算机科学家们通过让算法在计算过程中进行随机选择,以期提高算法的效率。

事实上,许多以前没有有效的确定性算法解决方案的问题,现在通过概率算法得到了有效的解决,虽然这些算法可能会有小概率的错误(但这种错误可以有效地减少)。

但是,随机性是否是必要的,还是可以去除它?成功的概率算法需要什么样的随机性?

这些问题以及其他许多基本问题构成了理解计算中随机性和伪随机性的核心。

更深入地理解计算中随机性的动态可以帮助我们开发更优秀的算法,并深化我们对计算本质的理解。

认可的计算假设下,所有的概率多项式时间算法,都可以被有效转化为确定性算法。

内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值