人体电流、电压

    电流强度越大,致命危险越大;持续时间越长,死亡的可能性越大。能引起人感觉到的最小电流值称为感知电流,交流为1mA,直流为5mA;人触电后能自己摆脱的最大电流称为摆脱电流,交流为10mA,直流为50mA;在较短的时间内危及生命的电流称为致命电流,如100mA的电流通过人体1s,可足以使人致命,因此致命电流为50mA。在有防止触电保护装置的情况下,人体允许通过的电流一般可按30mA考虑。虽然人体电阻一般可达5000Ω,但是,影响人体电阻的因素很多,如皮肤潮湿出汗、带有导电性粉尘、加大与带电体的接触面积和压力以及衣服、鞋、袜的潮湿油污等情况,均能使人体电阻降低,所以通常流经人体电流的大小是无法事先计算出来的。因此,为确定安全条件,往往不采用安全电流,而是采用安全电压来进行估算:人体对电流的反映:  8~10mA 手摆脱电极已感到困难,有剧痛感(手指关节).  20~25mA 手迅速麻痹,不能自动摆脱电极,呼吸困难.  50~80mA 呼吸困难,心房开始震颤.  90~100mA 呼吸麻痹,三秒钟后心脏开始麻痹,停止跳动.  一般情况下,也就是干燥而触电危险性较大的环境下,安全电压规定为36V,对于潮湿而触电危险性较大的环境(如金属容器、管道内施焊检修),安全电压规定为12V,这样,触电时通过人体的电流,可被限制在较小范围内,可在一定的程度上保障人身安全。

    静电电压的情况:静电既看不见又摸不着,它附着于物体表面,在与其他物体相互作用时才会释放能量。当感觉到电击时,人身上的静电电压已超过2000伏;当看到放电火花时,身上的静电电压已经超过3000伏,这时手指会有针刺般的痛感;当听到放电的“啪啪”声音时,身上的静电电压已高达7000伏-8000伏

资源下载链接为: https://pan.quark.cn/s/ddc62c5d4a5d Windows Mobile 是微软在 0200 年代至 2010 年代初推出的移动操作系统,曾广泛应用于智能手机和平板电脑。开发者可以借助各种库和框架为其开发功能丰富的应用,其中 “32feet.NET” 是一个开源的 .NET 库,专为 .NET Framework 和 .NET Compact Framework 提供蓝牙开发支持。它包含多个命名空间,例如 InTheHand.Devices.Bluetooth、InTheHand.Net.Personal 和 InTheHand.Phone.Bluetooth,用于实现蓝牙设备交互功能。 InTheHand.Devices.Bluetooth 命名空间用于执行基础蓝牙操作,比如扫描附近设备、建立连接以及发现蓝牙服务等。InTheHand.Net.Personal 提供了更高级的功能,例如创建个区域网络(PAN)、文件传输和串行端口模拟,便于开发者开发跨设备的数据共享应用。而 InTheHand.Phone.Bluetooth 主要针对 Windows Phone 平台,支持蓝牙配对、消息收发和蓝牙耳机控制等功能,不过由于 Windows Mobile 已停止更新,该命名空间更多适用于旧设备或项目。 压缩包中的文件列表看似是维基页面的渲染文件,可能是关于 32feet.NET 的使用教程、API 参考或示例代码。文件名如 13632.html、563803.html 等可能是页面 ID,涵盖蓝牙设备搜索、连接和数据传输等不同主题。 使用 32feet.NET 进行蓝牙开发时,开发者需要注意以下几点:首先,确保开发环境已安装 .NET Framework 或 .NET Compact Framework,以及 32feet.NET
资源下载链接为: https://pan.quark.cn/s/d8a2bf0af1ac Mask R-CNN 是一种在实例分割任务中表现优异的深度学习模型,它融合了 Faster R-CNN 的目标检测功能和 CNN 的像素级分类能力,能够实现图像中每个目标的定位、识别与分割。本指南将指导你如何使用 Mask R-CNN 训练自定义数据集。 你需要准备包含图像(JPEG 或 PNG 格式)和标注文件(XML 或 JSON 格式)的数据集,标注文件需包含物体类别、坐标和掩模信息。数据集应按照 COCO 标准组织,分为训练集、验证集和可选的测试集。可以使用工具如 COCO API 或 labelme 将原始数据转换为 COCO 格式,并确保图像文件名与标注文件名一致且在同一目录下。通常按 8:2 或 9:1 的比例划分训练集和验证集。 从提供的压缩包中安装所需库。运行 pip install -r requirements.txt 安装依赖,包括 TensorFlow、Keras、Cython、COCO API 等。 修改 train_test.py 和 test_model.py 中的路径,使其指向你的数据集目录,确保 ROOT_DIR 指向数据集根目录,ANNOTATION_DIR 指向标注文件所在目录。在 config.py 中根据硬件资源和训练目标调整学习率、批大小、迭代次数等参数。 运行 train_test.py 开始训练。训练时会加载预训练权重并进行微调,期间会定期保存模型,便于评估和恢复。 使用 test_model.py 或 test.py 对模型进行验证和测试。这些脚本会加载保存的模型权重,将其应用于新图像并生成预测结果。 预测结果为二进制掩模,需进一步处理为可读图像。可借助 COCO API 或自定义脚本将掩模合并到原始图像上,生成可视化结果。 若模型性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值