qiuzitao深度学习之PyTorch实战(九)

史上最简单、实际、通俗易懂的PyTorch实战系列教程!(新手友好、小白请进、建议收藏)

构建简单的卷积神经网络实战 --以MNIST数据集为例

卷积网络中的输入和层与传统神经网络有些区别,需重新设计,训练模块基本一致

一、导入需要用到的库

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torchvision import datasets,transforms 
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

二、读取数据

如果你data文件夹目录下有数据它就不用在线下载,没有的话它就会帮你在线下载。

分别构建训练集和测试集(验证集)

DataLoader来迭代取数据

# 定义超参数 
input_size = 28  #图像的总尺寸28*28
num_classes = 10  #标签的种类数
num_epochs = 3  #训练的总循环周期
batch_size = 64  #一个撮(批次)的大小,64张图片

# 训练集
train_dataset = datasets.MNIST(root='./data',  
                            train=True,   
                            transform=transforms.ToTensor(),  
                            download=True) 

# 测试集
test_dataset = datasets.MNIST(root='./data', 
                           train=False, 
                           transform=transforms.ToTensor())

# 构建batch数据
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

三、卷积网络模块构建

一般卷积层,relu层,池化层可以写成一个套餐

注意卷积最后结果还是一个特征图,需要把图转换成向量才能做分类或者回归任务

class CNN(nn.Module):
    def __init__(self):
        super(CNN, self).__init__()
        self.conv1 = nn.Sequential(         # 输入大小 (1, 28, 28)
            nn.Conv2d(
                in_channels=1,              # 灰度图1个通道,RGB就是3个通道
                out_channels=16,            # 要用多少个不同的卷积核,要得到几多少个特征图
                kernel_size=5,              # 卷积核大小
                stride=1,                   # 步长
                padding=2,                  # 加几圈0,如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2 if stride=1
            ),                              # 输出的特征图为 (16, 28, 28)
            nn.ReLU(),                      # relu层
            nn.MaxPool2d(kernel_size=2),    # 进行池化操作(2x2 区域), 输出结果为: (16, 14, 14)
        )
        self.conv2 = nn.Sequential(         # 下一个套餐的输入 (16, 14, 14)
            nn.Conv2d(16, 32, 5, 1, 2),     # 和上面一样,只是这里不再写参数的名字了而已,输出 (32, 14, 14)
            nn.ReLU(),                      # relu层
            nn.MaxPool2d(2),                # 输出 (32, 7, 7)
        )
        self.out = nn.Linear(32 * 7 * 7, 10)   # 全连接层得到的结果,10就是类别的个数

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = x.view(x.size(0), -1)           # 拉成一条长向量,flatten操作,结果为:(batch_size, 32 * 7 * 7)
        output = self.out(x)
        return output

四、准确率作为评估标准

def accuracy(predictions, labels):
    pred = torch.max(predictions.data, 1)[1] 
    rights = pred.eq(labels.data.view_as(pred)).sum() 
    return rights, len(labels) 

五、训练网络模型

# 实例化
net = CNN() 
#损失函数
criterion = nn.CrossEntropyLoss() 
#优化器
optimizer = optim.Adam(net.parameters(), lr=0.001) #定义优化器,普通的随机梯度下降算法

#开始训练循环
for epoch in range(num_epochs):
    #当前epoch的结果保存下来
    train_rights = [] 
    
    for batch_idx, (data, target) in enumerate(train_loader):  #针对容器中的每一个批进行循环
        net.train()                             
        output = net(data) 
        loss = criterion(output, target) 
        optimizer.zero_grad() 
        loss.backward() 
        optimizer.step() 
        right = accuracy(output, target) 
        train_rights.append(right) 

    
        if batch_idx % 100 == 0: 
            
            net.eval() 
            val_rights = [] 
            
            for (data, target) in test_loader:
                output = net(data) 
                right = accuracy(output, target) 
                val_rights.append(right)
                
            #准确率计算
            train_r = (sum([tup[0] for tup in train_rights]), sum([tup[1] for tup in train_rights]))
            val_r = (sum([tup[0] for tup in val_rights]), sum([tup[1] for tup in val_rights]))

            print('当前epoch: {} [{}/{} ({:.0f}%)]\t损失: {:.6f}\t训练集准确率: {:.2f}%\t测试集正确率: {:.2f}%'.format(
                epoch, batch_idx * batch_size, len(train_loader.dataset),
                100. * batch_idx / len(train_loader), 
                loss.data, 
                100. * train_r[0].numpy() / train_r[1], 
                100. * val_r[0].numpy() / val_r[1]))

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qiuzitao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值