Cursor MCP推荐

本文作者系360奇舞团前端开发工程师

▎概念

MCP(Model Context Protocol)是 AI 开发工作流中的「神经接口」,通过标准化协议让大模型直接调用本地工具链。MCP 通过定义统一的接口,使 AI 应用能够安全、灵活地访问和操作本地及远程数据资源,提升模型的功能性和可扩展性。它遵循客户端 - 服务器架构,主要包含 MCP 主机、MCP 客户端、MCP 服务器、本地资源和远程资源等核心概念。其工作流程是 MCP 客户端先从 MCP 服务器获取可用工具列表,若需使用工具则通过 MCP 服务器执行相应调用,最后 LLM 基于所有信息生成自然语言响应。


▎MCP推荐

1. Sequential Thinking

核心能力
能够将复杂的问题拆分成一个个可管理的小步骤,让 AI 可以逐步进行分析和处理。例如,在处理一个复杂的编程任务时,它会把任务分解为多个子任务,如先确定算法框架,再处理数据输入输出,最后进行代码优化等。

配置流程
如果是文件配置,可以编辑~/.cursor/mcp.json(全局)或者是在项目根目录下创建 .cursor/mcp.json 文件(项目级别)。例如:

{
  "mcpServers": {
    "mcp服务名": {
      "command": "npx",
      "args": ["-y", "指令"]
    }
  }
}

这里演示图形化的配置方式:

  

npx -y @modelcontextprotocol/server-sequential-thinking

点击Save

如果左上角是绿色的灯,就是配置成功了,如果配置失败,可以尝试重启cursor。

调用方式以及示例

在COMPOSER对话页,开启agent模式才能调用MCP服务。如果希望调用该MCP服务,可以添加(使用思考能力)等和思考相关的提示词,即可开启。调用时,Called MCP tool 后面就会带上sequentialthinking的标志,意味着调用成功了。
使用场景
对于一些复杂问题,可以使用Sequential Thinking服务,将复杂问题分解为小的问题,逐个解决。同时每调用一次,都可以从thought中获取到LLM当前的思考过程以及采取的方法,有时还会提供多种方案,我们可以通过再次提问,实现对于方案的选取以及之前思考过程的调整。

2. Server Memory

核心能力
能够让 AI 记住之前的信息和交互内容,在处理后续任务时可以调用这些记忆,从而更连贯地进行分析和处理。例如,在进行多轮对话的编程对话时,AI 可以记住之前用户提出的代码问题和已解决的部分,在后续交流中基于这些记忆给出更合适的建议和指导。
配置流程

npx -y @modelcontextprotocol/server-memory

使用场景: 对于一些需要多轮交互且依赖之前信息的复杂问题,可以使用 Server Memory 服务。比如在进行项目需求分析时,用户不断补充和修改需求,AI 能够记住之前的需求内容,在后续分析中综合考虑,给出更全面准确的分析结果。

3. Fetch

核心能力
能够从外部数据源获取相关信息,为 AI 的分析和处理提供丰富的数据支持。例如,在处理与特定领域知识相关的任务时,它可以从文档存储库等数据源中获取准确的信息,以便更准确地回答问题或完成任务,以 markdown 的格式返回。

配置流程
使用 uv 时,不需要进行特定安装。设置Command为:

uvx mcp-server-fetch

也可以使用python:

pip install mcp-server-fetch

python -m mcp_server_fetch

调用方式以及示例

输入(使用fetch工具)等相关提示词即可调用,也可以对链接进行读取。
使用场景
对于需要依赖外部数据的任务,可以使用 Fetch MCP 服务,从外部数据源获取准确且相关的数据,以便更全面、准确地完成任务。

4. Play Wright和Puppeteer

核心能力: Playwright 和 Puppeteer 都是用于浏览器自动化的强大工具,该服务可以让LLMs在真实的浏览器环境中与网页交互、截取屏幕截图和执行 JavaScript等等。
配置流程

npx -y @executeautomation/playwright-mcp-server
npx -y @modelcontextprotocol/server-puppeteer

调用方式以及示例
使用puppeteer/Playwright工具,测试http://localhost:5173/的表单提交。 在自动执行了一些脚本之后,就会调用MCP服务:

  • 自动执行了表单测试。

  • 也可以使用PlayWright来截图,例如:
    使用playWright截取天猫、京东、拼多多网站的截图,保存到@public的images文件夹下,并分析板式结构。

  • 自动创建目录

  • 自动截取图片,保存到了指定文件夹

……省略其他文字内容

  • 进行了版式分析,减少了很多人工操作。

总结

本次推荐的几种 MCP 各有特点和适用场景:Sequential Thinking 擅长将复杂问题拆解,便于分步处理,适用于处理复杂编程任务等场景,可帮助获取 LLM 的思考过程与多种解决方案;Server Memory 能让 AI 记住过往交互信息,在多轮对话编程和项目需求分析等依赖先前信息的任务中发挥重要作用;Fetch 可从外部数据源获取信息,为 AI 提供数据支持,适用于处理需外部数据的特定领域任务;Play Wright 和 Puppeteer 则专注于浏览器自动化,可实现 LLMs 与网页的交互、截图及执行 JavaScript 等操作。

MCP文档

更多MCP可以参考:
https://smithery.ai/
https://glama.ai/mcp/tools?searchTerm=&sortingOrder=search-relevance%3Adesc

-END -

如果您关注前端+AI 相关领域可以扫码进群交流

添加小编微信进群😊

关于奇舞团

奇舞团是 360 集团最大的大前端团队,非常重视人才培养,有工程师、讲师、翻译官、业务接口人、团队 Leader 等多种发展方向供员工选择,并辅以提供相应的技术力、专业力、通用力、领导力等培训课程。奇舞团以开放和求贤的心态欢迎各种优秀人才关注和加入奇舞团。

<think>好的,用户想了解如何启用Sequential Thinking并配置prompt示例。首先,我需要明确用户提到的Sequential Thinking是什么。根据引用[1]中的内容,Sequential Thinking可能涉及在模型处理任务时逐步扩展思考步骤,比如使用更多的步骤来提高性能。例如,用户提到的“sequential scaling”提示模型使用32到512步不等。这可能意味着在prompt中引导模型分步思考,逐步深入解决问题。 接下来,用户需要具体的启用和配置方法。根据引用[3]中的MCP协议,提示模板支持动态参数、资源上下文和链式交互。因此,配置Sequential Thinking可能需要设计一个分步骤的提示模板,逐步引导模型生成更详细的思考过程。例如,在prompt中明确告诉模型“请分步骤分析问题”或者“逐步推理”。 然后,考虑到引用[1]提到并行轨迹生成,可能需要结合顺序扩展和并行生成,比如让模型先生成多个可能的思路,再逐步细化。此外,引用[3]提到的链式交互功能也支持多步骤流程,这可能需要在提示模板中设置多个阶段,每个阶段引导模型进行更深入的思考。 关于启用方法,可能需要通过API参数设置,如调整生成步数(max_tokens)或温度(temperature)来控制生成内容的连贯性。同时,在prompt中明确指令,如“请按照以下步骤分析:第一步...第二步...”等结构,帮助模型组织输出。 用户可能需要示例,比如在代码生成任务中,先让模型列出需求,再编写函数框架,最后填充细节。或者解决数学问题时,分步推导,每一步都验证合理性。这需要具体的prompt示例,确保模型遵循顺序思考的流程。 还要注意引用[2]提到的理论框架,虽然不直接影响配置,但提示设计可能需要参考认知模型,引导模型模拟人类的逐步推理过程。例如,使用思维链(Chain-of-Thought)技术,明确要求模型展示中间步骤。 总结步骤:首先确定Sequential Thinking的具体实现方式,结合MCP的提示模板功能设计多步骤结构,设置API参数控制生成过程,并提供具体任务中的prompt示例。需要检查是否有遗漏点,比如是否需要调整模型参数或使用特定库,但根据现有引用,主要应通过提示工程和模板配置来实现。</think>### 如何启用 Sequential Thinking 并配置 Prompt 示例 #### 1. **理解 Sequential Thinking 的核心逻辑** Sequential Thinking(顺序思考)是一种通过逐步扩展模型的思考步骤来提升任务性能的方法。其核心逻辑包括: - **分步引导**:将复杂任务拆解为多个逻辑连贯的子步骤,通过逐步提示引导模型深入分析[^1]。 - **动态扩展**:根据任务复杂度,动态调整模型的思考步数(如从32步到512步)。 - **上下文链式交互**:利用提示模板支持多步骤流程,保持上下文连贯性[^3]。 --- #### 2. **启用 Sequential Thinking 的具体方法** ##### a. **通过 API 参数控制** - **设置生成步数**:在生成请求中指定 `max_tokens` 或 `steps` 参数,例如: ```python response = model.generate( prompt=user_input, steps=64, # 控制思考步数 temperature=0.7 # 平衡生成结果的多样性 ) ``` ##### b. **使用提示模板设计链式流程** 基于 MCP 的提示模板功能[^3],可设计如下模板: ```text 请按步骤分析以下问题: 1. 第一步:明确问题目标({用户输入}) 2. 第二步:列出已知条件和约束 3. 第三步:分阶段推导解决方案 4. 第四步:验证最终答案的合理性 ``` --- #### 3. **Prompt 配置示例** ##### a. **数学问题分步推导** ```text 任务:解方程 $x^2 - 5x + 6 = 0$ 步骤: 1. 识别方程类型:二次方程 2. 应用因式分解法:寻找两个数 $a$ 和 $b$,使得 $a + b = 5$,$a \times b = 6$ 3. 分解结果:$(x-2)(x-3) = 0$ 4. 解得:$x=2$ 或 $x=3$ ``` ##### b. **代码生成任务** ```text 任务:编写快速排序函数 步骤: 1. 定义基准条件:若数组长度≤1,直接返回 2. 选择基准元素(如首元素) 3. 分割数组为小于基准和大于基准的两部分 4. 递归排序子数组并合并结果 ``` --- #### 4. **性能优化建议** - **并行扩展**:结合引用[1]提到的并行轨迹生成(如16个并行分支),通过多数投票(majority voting)提升结果可靠性。 - **动态参数化**:在提示模板中插入变量(如 `{problem}`),实现任务自适应: ```text 请分步解决:{problem} 第一步:分析问题类型 第二步:列出关键公式或算法 ... ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值