真香!云端部署JupyterLab并配置进程守护,随时随地访问开发环境!

本文介绍了如何搭建远程JupyterLab服务,解决本地环境限制和性能问题。通过配置服务器,设置密码,修改Jupyter配置文件以允许远程访问,并演示了使用screen或tmux实现后台运行,确保服务稳定。此外,还提到了通过守护进程配置实现开机自启,以提高工作效率。
摘要由CSDN通过智能技术生成

一、为什么需要一个远程Jupyter服务

熟悉Python的同学应该都知道Jupyter Notebook这一数据分析神器,它能帮助我们有效地组织输入输出,将我们探索数据的过程记录下来,后续稍加整理便可以生成一篇报告或者博客。Jupyter Notebook支持Markdown,也支持Python、R甚至Julia等语言,完全可以支持一个数据工作者的大多数分析需求。

然而有一个问题可能困扰了很多人,那就是本地的Jupyter Notebook无法轻易地带来带去,性能也不一定有保障。考虑以下场景:

  • 小明在公司使用Jupyter Notebook做了一些分析,但是下班回家后还要继续工作。家里的电脑跟公司的电脑环境不完全一致,同时公司的电脑是台式机无法带回家(或者懒得背笔记本回家);
  • 小明的笔记本是超极本,性能较弱,无法支持大数据分析的需求;
  • 小明在公司机器上使用Jupyter Notebook跑出了一份结果,但是他回家后需要查阅;
  • ……

当你也面临这些场景时,你就有必要考虑搭建一个可以远程访问的Jupyter Notebook或者JupyterLab服务了。JupyterLab与Jupyter Notebook师出同源,可以凭个人爱好进行选择。此次我们拿JupyterLab来进行演示,下边就是老Q的成品展示。

二、快速搭建JupyterLab服务

首先,我们需要一台服务器,或者一台家庭电脑。如果是家庭电脑的话,我们还需要提前搞定公网IP和动态解析,感兴趣的可以翻一下前两个星期的历史文章。老Q的主机是deepin系统,不过根据老Q的经验,Ubuntu、CentOS等也没什么本质区别。

接我们需要保证我们已经安装了Python/Python3,同时已经安装了对应版本的JupyterLab/Jupyter Notebook,使用pip安装Jupyter系列非常方便。

pip3 install jupyter jupyterlab

安装完成之后,我们进入ipython中,来为我们的Jupyter服务配置密码:

In [1]: from jupyter_server.auth import passwd

In [2]: passwd()
Enter password:
Verify password:
Out[2]: 'argon2:xxxxxxx:xxxxxxxx'

上边的输出中,‘argon2:’开头的这一串我们需要复制下来,一会儿配置的时候需要使用。而我们输入的密码就是我们在浏览器中登录Jupyter时需要输入的。

接下来我们生成Jupyter配置文件并使用vim打开(这里注意把路径替换为你的配置文件的路径):

$ jupyter lab --generate-config
Writing default config to: /home/oldq/.jupyter/jupyter_notebook_config.

$ vim /home/oldq/.jupyter/jupyter_notebook_config.py

我们看到了一大串的配置选项,一入眼就有点懵了。不要慌,我们只需要修改其中的四行即可。我们使用vim的快捷键/来搜索以下几项,将他们之前的注释去掉,并按照如下配置修改。

# 将ip设置为*,意味允许任何IP访问
c.ServerApp.ip = '*'
# 这里的密码就是上边我们生成的那一串
c.ServerApp.password = 'argon2:xxxxxxx:xxxxxxxx'
# 服务器上并没有浏览器可以供Jupyter打开
c.ServerApp.open_browser = False
# 监听端口设置为8888或其他自己喜欢的端口
c.ServerApp.port = 8888
# 我们可以修改jupyter的工作目录,也可以保持原样不变,如果修改的话,要保证这一目录已存在
c.ServerApp.root_dir = '/home/oldq/Jupyter'
# 允许远程访问
c.ServerApp.allow_remote_access = True

好了,保存输入:wq退出vim。

接下来输入jupyter lab启动jupyter服务即可:

$ jupyter lab --allow-root
[W 20:23:23.497 LabApp] WARNING: The notebook server is listening on all IP addresses and not using encryption. This is not recommended.
[I 20:23:23.498 LabApp] The port 8888 is already in use, trying another port.
[I 20:23:23.510 LabApp] JupyterLab extension loaded from /usr/local/lib/python3.6/site-packages/jupyterlab
...

接下来我们打开浏览器测试以下,在地址栏中输入服务器的地址,并访问其8888端口(或自己设置的jupyter监听端口),如:127.0.0.1:8888:

可以看到,浏览器自动跳转打开了我们搭建的JupyterLab服务。在这个过程里,需要输入密码,也就是我们自己设置并确认的密码。

接下来,我们导入matplotlib画一个图测试一下,完美。

二、配置后台运行

到了这里问题还没有结束,因为我们和服务器的连接会断开,或者我们会关闭运行jupyter的这个窗口,这样的话就相当于杀死了Jupyter服务,我们在别的地方就无法通过浏览器远程访问了。有没有什么好办法能解决这个麻烦呢?有,那就是使用强大的screen或者tmux。

1. screen

screen命令可以让我们开启大量的窗口,并灵活控制每个窗口的开启关闭、前台后台状态。那么接下来,我们使用screen命令将Jupyter服务放置在后台运行,这样的话,及时我们本地的电脑关闭了或者断开了与服务器的连接,我们搭建的Jupyter服务依然会正常运行。

我们使用screen命令新开一个窗口,并命名为jupyter(或其他你喜欢的名字):

$ screen -S jupyter

接下来,我们在新开的窗口中打开Jupyter Lab:

$ jupyter lab

程序运行起来之后,我们使用Ctrl + A + D的快捷键将这一窗口放入后台,并回到开启screen窗口之前的状态:

$ screen -S jupyter
[detached from 29957.jupyter]

我们也可以查看目前都有哪些窗口在后台运行:

$ screen -ls
There is a screen on:
	48155.jupyter	(Detached)
1 Socket in /var/run/screen/S-root.

想要返回我们刚才使用的screen窗口,可以这样:

$ screen -r    # 其后可以通过指定窗口名打开特定窗口,默认打开上一个使用的窗口

2. tmux

tmux的用法也是类似的。我们可以先通过如下命令创建一个会话。

tmux new -s jupyter

然后启动Jupyter Lab。

jupyter lab

然后我们按住快捷键Ctrl+b,松开,再按一下d。我们就把这个会话放到了后台。

如果我们想要返回刚才的会话,可以输入:

tmux attach -t jupyter

三、配置守护进程以实现开机自启

上述两种方法虽然好,但是有一个缺陷,那就是每次电脑重启后,进程不会自动重启,我们需要手动再开启一遍。那么这个问题如何解决呢?

答案就是配置守护进程。配置守护进程最简单的方法就是利用宝塔面板,没听说过的可以搜索一下,免费安装到电脑。然后在宝塔面板中,搜索安装进程守护管理器。

接下来,我们在某个目录写一个脚本文件,如/usr/local/bin/auto_jupyter.sh,内容如下:

#!/usr/bin/zsh

/home/datalab/anaconda3/bin/jupyter-lab

我们在宝塔面板中,找到进程守护管理器并进入。点击添加守护进程,填写名称、启动用户、启动目录、启动命令等即可。

好了,这样我们就可以随时随地访问并愉快地使用我们的JupyterLab服务了,大家有问题可以留言在下方,随时交流。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化祛魅官 老Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值