科普:大模型使用中的temperature 与 top-k及其它

在大语言模型(如通过 Ollama 运行的 llama2 模型)中,temperaturetop-k 是两个用于控制文本生成过程的重要参数,它们在功能上相互独立,但又共同影响着模型生成文本的随机性和多样性。

一、各自的作用

  • temperature:该参数主要用于控制生成文本的随机性。它会对模型预测的词概率分布进行调整。具体来说,temperature 值越高,概率分布就越平滑,各个词被选中的概率就越接近,生成文本的随机性也就越大,可能会产生更多新颖、出人意料的内容;反之,temperature 值越低,概率分布越陡峭,模型越倾向于选择概率最高的词,生成的文本会更加确定和保守。例如,当 temperature 接近 0 时,模型几乎总是选择概率最高的词,生成的文本会比较固定。
  • top-ktop-k 采样策略会限制模型在生成下一个词时的候选词范围。模型在每一步生成文本时,只会考虑概率最高的 k 个词作为候选,而忽略其他词。通过设置 top-k,可以减少生成出不相关或低质量词汇的可能性,让生成的文本更加符合语义和逻辑。例如,top-k 40 表示模型只从概率最高的 40 个词中选择下一个词。

二、两者关系

  • 相互配合影响随机性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值