在大语言模型(如通过 Ollama 运行的 llama2
模型)中,temperature
和 top-k
是两个用于控制文本生成过程的重要参数,它们在功能上相互独立,但又共同影响着模型生成文本的随机性和多样性。
一、各自的作用
temperature
:该参数主要用于控制生成文本的随机性。它会对模型预测的词概率分布进行调整。具体来说,temperature
值越高,概率分布就越平滑,各个词被选中的概率就越接近,生成文本的随机性也就越大,可能会产生更多新颖、出人意料的内容;反之,temperature
值越低,概率分布越陡峭,模型越倾向于选择概率最高的词,生成的文本会更加确定和保守。例如,当temperature
接近 0 时,模型几乎总是选择概率最高的词,生成的文本会比较固定。top-k
:top-k
采样策略会限制模型在生成下一个词时的候选词范围。模型在每一步生成文本时,只会考虑概率最高的k
个词作为候选,而忽略其他词。通过设置top-k
,可以减少生成出不相关或低质量词汇的可能性,让生成的文本更加符合语义和逻辑。例如,top-k 40
表示模型只从概率最高的 40 个词中选择下一个词。
二、两者关系
- 相互配合影响随机性