3、大模型重要参数解析top_k、top_p、temperature

模型重要参数解析

总结:先选取top_K个token,然后保留概率的累计和达到top_p的token,然后用Temperature 进行归一化改变概率分布(温度越低,概率分布差距越大,越容易采样到概率大的字。温度越高,概率分布差距越小,增加了低概率字被采样到的机会),最后随机采样。

top_k

  • 思路:从 tokens 里选择 k 个作为候选,然后根据它们的 likelihood scores 来采样模型从最可能的"k"个选项中随机选择一个,如果k=3,模型将从最可能的3个单词中选择一个

  • 优点:Top-k 采样是对前面“贪心策略”的优化,它从排名前 k 的 token 中进行抽样,允许其他分数或概率较高的token 也有机会被选中。在很多情况下,这种抽样带来的随机性有助于提高生成质量。

  • 缺点:在分布陡峭的时候仍会采样到概率小的单词,或者在分布平缓的时候只能采样到部分可用单词。k不太好选:k设置越大,生成的内容可能性越大;k设置越小,生成的内容越固定;设置为1时,和 greedy decoding 效果一样。

Top-p抽样——核采样(Nucleus Sampling)

  • 思路:候选词列表是动态的,从 tokens 里按百分比选择候选词,模型从累计概率大于或等于“p”的最小集合中随机选择一个,如果p=0.9,选择的单词集将是概率累计到0.9的那部分。

  • top-P采样方法往往与top-K采样方法结合使用,每次选取两者中最小的采样范围进行采样,可以减少预测分布过于平缓时采样到极小概率单词的几率。如果k和p都启用,则p在k之后起作用

  • top-P越高,候选词越多,多样性越丰富。top-P越低,候选词越少,越稳定

  • 优点:top-k 有一个缺陷,那就是“k 值取多少是最优的?”非常难确定。于是出现了动态设置 token 候选列表大小策略——即核采样(Nucleus Sampling)。

  • 缺点:采样概率p设置太低模型的输出太固定,设置太高,模型输出太过混乱。

Temperature

  • 思路:通过温度,在采样前调整每个词的概率分布。温度越低,概率分布差距越大,越容易采样到概率大的字。温度越高,概率分布差距越小,增加了低概率字被采样到的机会。

  • 参数:temperature(取值范围:0-1)设的越高,生成文本的自由创作空间越大,更具多样性。温度越低,生成的文本越偏保守,更稳定。

  • 一般来说,prompt 越长,描述得越清楚,模型生成的输出质量就越好,置信度越高,这时可以适当调高 temperature 的值;反过来,如果 prompt 很短,很含糊,这时再设置一个比较高的 temperature 值,模型的输出就很不稳定了。

联合采样(top-k & top-p & Temperature)

  • 思路:通常我们是将 top-k、top-p、Temperature 联合起来使用。使用的先后顺序是 top-k->top-p->Temperature。

首先我们设置 top-k = 3,表示保留概率最高的3个 token。这样就会保留女孩、鞋子、大象这3个 token。

女孩:0.664

鞋子:0.199

大象:0.105

接下来,我们可以使用 top-p 的方法,保留概率的累计和达到 0.8 的单词,也就是选取女孩和鞋子这两个 token。接着我们使用 Temperature = 0.7 进行归一化,变成:

女孩:0.660

鞋子:0.340

接着,我们可以从上述分布中进行随机采样,选取一个单词作为最终的生成结果。

<think>好的,我现在需要回答用户关于大模型Top-K采样的算法实现的问题。首先,我应该回顾Top-K采样的基本概念,确保自己理解正确。根据用户提供的引用资料,Top-K采样是在生成文本的每一步选择概率最高的K个词,然后从这K个词中重新计算概率分布并进行采样。这样做可以平衡生成文本的多样性和连贯性。 接下来,我需要解释算法实现的具体步骤。用户可能需要知道如何从概率分布中选择前K个词,如何重新归一化概率,以及采样的方法。我应该分步骤说明,比如排序概率、截取前K个、归一化、采样等。同时,结合用户提供的引用内容,特别是引用[2]和引用[3],提到Top-K的动态候选列表和与Top-P的结合使用,这些可以作为补充说明。 然后,考虑是否需要给出代码示例。用户之前提供的示例中有Python代码,所以用Python实现Top-K采样会比较直观。代码应包括选择top_k的步骤,应用softmax重新计算概率,然后使用np.random.choice进行采样。需要注意处理概率为0的情况,以及如何确保正确选择top_k的索引。 此外,需要讨论参数k的影响,如k值过小导致重复或保守的输出,过大则可能引入低概率词。引用[3]中提到Top-K和Top-P结合使用的情况,可以提到这一点,说明实际应用中两者的配合使用。 最后,总结Top-K采样的优缺点,引用中的内容提到Top-K的缺陷是k值难以确定,因此可以引出核采样(Top-P)作为改进,但用户的问题集中在Top-K,所以这部分可以作为补充说明,但重点还是保持在对Top-K的详细解释上。 检查是否有遗漏的要点,比如是否要提到温度参数(Temperature),但用户的问题明确是关于Top-K,所以温度参数可能属于其他部分,但可以简要提及它们的关系,如引用[3]中提到的Temperature的作用,但这里不深入。 确保回答结构清晰,分点说明实现步骤、代码示例、参数影响和优缺点,并正确引用提供的资料。避免使用Markdown格式,使用中文,行内公式用$...$,独立公式用$$...$$,但用户的问题中没有数学公式需求,所以可能不需要,但代码部分需要用反引号包裹。 最后,生成相关问题,参考用户提供的示例,提出与Top-K相关的问题,如参数选择、与其他方法的对比、应用场景等。</think>### 大模型Top-K采样算法实现解析 #### 1. 核心概念 **Top-K采样**是大模型生成文本时的一种解码策略,其核心思想是在每一步预测时,仅从概率最高的$K$个候选词中采样。通过限制候选词数量,既能保持生成内容的多样性,又能避免选择低概率的无意义词[^2]。 #### 2. 实现步骤 1. **计算概率分布** 给定上下文输入,模型输出所有词的概率分布$P(w_i | w_{1:t-1})$。 2. **选择Top-K词** 按概率从高到低排序,保留前$K$个词并形成候选集$V_{\text{top-k}}$,其余词概率置零: $$P_{\text{top-k}}(w_i) = \begin{cases} P(w_i) & \text{若} w_i \in V_{\text{top-k}} \\ 0 & \text{否则} \end{cases}$$ 3. **重归一化概率** 对候选集的概率重新归一化,确保总和为1: $$P_{\text{norm}}(w_i) = \frac{P_{\text{top-k}}(w_i)}{\sum_{w_j \in V_{\text{top-k}}} P(w_j)}$$ 4. **基于新分布采样** 从$V_{\text{top-k}}$中按$P_{\text{norm}}$进行随机抽样,选择下一个词。 #### 3. 代码示例(Python) ```python import numpy as np def top_k_sampling(logits, k=50): # 步骤1:计算概率(假设logits已通过softmax转换) probs = np.exp(logits) / np.sum(np.exp(logits)) # 步骤2:获取Top-K索引和概率 top_k_indices = np.argsort(probs)[-k:] # 取概率最大的K个索引 top_k_probs = probs[top_k_indices] # 步骤3:重归一化 top_k_probs /= np.sum(top_k_probs) # 步骤4:采样 sampled_index = np.random.choice(top_k_indices, p=top_k_probs) return sampled_index ``` #### 4. 参数$K$的影响 - **小$K$值**(如$K=10$):生成内容更保守,但可能重复或缺乏创意。 - **大$K$值**(如$K=100$):多样性增加,但可能引入低质量词。 实际应用中常与**Top-P采样**结合,动态调整候选词范围(取$K$和$P$对应的候选集中较小的集合)[^3]。 #### 5. 优缺点分析 - **优点**:显式控制候选词数量,防止生成极端低概率词。 - **缺点**:$K$值需手动调整,若文本概率分布平缓时可能丢失有效候选词。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值