深度学习
文章平均质量分 91
深度学习记录
非晚非晚
一往无前,不急不躁,生命不熄,折腾不止!
展开
-
深度学习模型参数量以及FLOPs计算工具
深度学习模型参数量与FLOPs计算工具介绍原创 2022-07-12 21:21:30 · 3072 阅读 · 0 评论 -
上采样、下采样以及Pytorch中的卷积与反卷积(转置卷积)方法介绍(conv2d和convTranspose2d)
卷积操作可以压缩整合图片特征,让[通道, 宽, 高]分别为[c,h,w][c,h,w]的特征图片通过Conv2d。变为更多的通道(维度)cc,更小的尺寸[h,w][h,w]。也就是说,当输入为一组图片[n,c,h,w][n,c,h,w]格式时,输出也为[n,c,h,w][n,c,h,w]格式。转置卷积,也称为反卷积(deconvlution)和分部卷积(fractionally-strided convolution)。为卷积的逆操作,即把特征的维度压缩,但尺寸放大。注意它 不是真正意义上 的卷积的逆操作。原创 2022-05-30 09:43:51 · 12613 阅读 · 3 评论 -
机器学习中常见的评价指标总结
1. 评价指标的种类2. 分类任务的评价指标2.1 分类任务的一些概念(1) 交并率(IoU, Intersection over Union)(2)TP、FP、FN、TN与混淆矩阵2.2 准确率(Accuracy)2.3 精确率与召回率(Precision , Recall)2.4 F1分数2.5 G分数2.6 AP和mAP2.7 ROC与AUC(1)ROC(2)AUC3. 回归任务的评价指标3.1 MSE3.2 MAE3.3 RMSE原创 2022-05-09 19:51:02 · 11999 阅读 · 0 评论 -
一文理解深度学习中的BN,LN,IN,GN,SN的归一化操作
归一化层,目前主要有这几个方法,Batch Normalization(2015年)、Layer Normalization(2016年)、Instance Normalization(2017年)、Group Normalization(2018年)、Switchable Normalization(2018年)。原创 2022-03-28 09:17:27 · 4270 阅读 · 1 评论 -
CNN中卷积层输入与输出尺寸的计算细节
输入矩阵格式:四个维度,依次为:样本数、图像高度、图像宽度、图像通道数输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度、图像宽度、图像通道数)的尺寸发生变化。权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度、卷积核宽度、输入通道数、输出通道数(卷积核个数)...转载 2022-03-21 21:52:48 · 8590 阅读 · 0 评论 -
简简单单了解一下softmax与交叉熵
也看了不少softmax和交叉熵的文章了,不少文章对它们的来龙去脉做了比较清晰地梳理,有些文章讲得过于复杂,从信息量、相对熵(KL散度)讲到交叉熵,对于想要实际应用的同学来说,其实没有必要掌握它的来龙去脉,于是在此,对softmax和交叉熵的概念和公式进行简要说明,辅助以实际例子对它们具体说明。原创 2022-01-11 21:16:51 · 3511 阅读 · 0 评论 -
【深度学习基础】学习率(learning rate)的理解与分类
1. 训练与学习率的关系2. 学习率的衰减策略(1)分段常数衰减(2)指数衰减(3)自然指数衰减(4)多项式衰减(5)余弦衰减(6)Lambda学习率3. 周期性学习率(1)循环学习率(2)带热重启的随机梯度下降4. 自适应学习率(1)Adagrad算法(2)RMSprop算法(3)AdaDelta算法原创 2021-12-27 20:41:46 · 21743 阅读 · 0 评论 -
深度学习专业术语之英文介绍——附含历届ILSVRC冠亚军结果
既然要研究深度学习这一门学科,外文的论文和资料阅读是必不可少的,下面就总结一些深度学习相关方面的专有英文,并做一些必要解释。原创 2021-12-15 21:56:10 · 1667 阅读 · 0 评论 -
【深度学习基础】一文读懂卷积神经网络(Convolutional Neural Networks, CNN)
CNN从90年代的LeNet开始,21世纪初沉寂了10年。直到2012年Geoffrey和他学生Alex在ImageNet的竞赛中,刷新了image classification的记录,一举奠定了deep learning 在计算机视觉中的地位。这次竞赛中Alex所用的结构就被称为作为AlexNet,AlexNet使用的就是CNN。1. 基本概念2. 卷积神经网络的结构2.1 输入层2.2 卷积层2.3 池化层2.4 全连接层2.5 卷积神经网络的其它概念(1)感受野(2)padding(3)stride原创 2021-12-12 13:43:17 · 4550 阅读 · 0 评论 -
【深度学习基础】Epoch, Batch, Iteration这三个概念的区别与联系
batchsize最大是样本总数N,此时就是Full batch learning;最小是1,即每次只训练一个样本,这就是在线学习(Online Learning)。当我们分批学习时,每次使用过全部训练数据完成一次Forword运算以及一次BP运算,即成为完成了一次epoch。原创 2021-12-07 23:19:08 · 7339 阅读 · 0 评论 -
【深度学习基础】聊一聊从感知机到神经网络
1. 从机器学习到深度学习1.1 简要了解机器学习到深度学习1.2 深度学习的发展浪潮2. 感知机3. 前馈神经网络4. 反向传播(Backpropagation)(1)step1:赋初始值(2)step2:前向传播(3)step3:反向传播5. 隐藏层 我们知道,Machine Learning分为两大派别:频率派和贝叶斯派;前者逐渐发展为统计学习,后者逐渐发展为概率图模型(PGM,Probability graph model)。原创 2021-11-28 16:33:35 · 2093 阅读 · 0 评论 -
【深度学习基础】——硬件知识总结
CPU主要用于串行运算;而GPU则是大规模并行运算。由于深度学习中样本量巨大,参数量也很大,所以GPU的作用就是加速网络运算。CPU算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。而目前GPU运算主要集中在矩阵乘法和卷积上,其他的逻辑运算速度并没有CPU快。原创 2021-11-01 09:03:33 · 942 阅读 · 0 评论 -
【深度学习基础】——基本概念和术语整理
1. 人工智能(AI)、机器学习(ML)和深度学习(DL)1.1 人工智能1.2 机器学习1.3 深度学习1.4 人工智能、机器学习和深度学习的关系2 监督学习与无监督学习3. 深度神经网络(deep neural networks,DNN)4. 激活函数(activation function)4.1 sigmoid4.2 tanh激活函数4.3 Relu激活函数4.4 Leak Relu 激活函数4.5 Softmax激活函数4.6 激活函数的性质4.7 激活函数的选择5. 欠拟合与过拟合原创 2021-10-24 15:56:07 · 3416 阅读 · 4 评论 -
深度神经网络概念整理,最简单的神经网络是什么样子?
目录 1.神经网络训练过程 2、基础概念 3、数据预处理手段 4、数据处理库 5、训练集、测试集,测试集 5、损失函数 6、优化器 7、激活函数 8、hello world 9、总结 深度神经网络就是用一组函数去逼近原函数,训练的过程就是寻找参数的过程。 1.神经网络训练过程 神经网络的训练过程如下: 收集数据,整理数据 实现神经网络用于拟合目标函数 做一个真实值和目标函数值直接...转载 2021-09-07 09:08:18 · 737 阅读 · 0 评论