论文阅读笔记
文章平均质量分 95
一些论文的阅读笔记汇总
非晚非晚
一往无前,不急不躁,生命不熄,折腾不止!
展开
-
【论文阅读】ICRA 2023|BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Representation
BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation发表单位:MIT发表期刊:ICRA 2023多传感器融合对于准确和可靠的自动驾驶系统至关重要。最近的方法基于点级()融合方法:使用图像特征对激光点云进行增强。但是,相机到激光()投影的方法丢掉了图像的语义密度,特别对于3D场景分割任务。在本文中,我们使用BEVFusion。原创 2024-08-09 11:49:12 · 1284 阅读 · 1 评论 -
【论文阅读】CVPR 2019| PointPillars: 基于点云的快速编码目标检测框架(Fast Encoders for Object Detection from Point Clouds)
点云中的目标检测是许多机器人应用(如自动驾驶)的一个重要部分。最近有两种主要的点云编码类型:固定编码器往往速度快,但牺牲了准确性,而从数据中学习的编码器更准确,但较慢。本文,我们提出了一种新的点云编码器:PointPillars,它利用PointNets来学习由点云组成的垂直柱(柱子)。这种编码功能可以用于任何标准的二维卷积检测体系结构。大量的实验表明,PointPillars在速度和准确性方面都大大优于以前的编码器。......原创 2021-12-01 17:14:36 · 6075 阅读 · 2 评论 -
cartographer:论文阅读(Real-Time Loop Closure in 2D LIDAR SLAM)
实时并且可视化的建图能够帮助操作员很好的评估建图质量和查看构建地图的范围,文章提供了一种5cm分辨率、实时建图和闭环的一种方法。一. 介绍INTRODUCTION本文的贡献:提供了一种新颖的方法,减少大量激光数据中计算闭环约束的计算要求。该方法可以构建数万平方米的地图。二. 相关工作scan-to-scan常用方法,但是容易积累误差。scan-to-map可以有效的减少累计误差。其中一个代表性方法为利用高斯牛顿法查找最佳插值,详见下面的论文:S. Kohlbrecher, J. Meye原创 2021-01-01 16:54:48 · 1037 阅读 · 0 评论