【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder


BEVFusion相关的其他文章链接:

  1. 【论文阅读】ICRA 2023|BEVFusion:Multi-Task Multi-Sensor Fusion with Unified Bird‘s-Eye View Representation
  2. MIT-BEVFusion训练环境安装以及问题解决记录
  3. 【MIT-BEVFusion代码解读】第一篇:整体结构与config参数说明
  4. 【MIT-BEVFusion代码解读】第二篇:LiDAR的encoder部分
  5. 【MIT-BEVFusion代码解读】第三篇:camera的encoder部分
  6. 【MIT-BEVFusion代码解读】第四篇:融合特征fuser和解码特征decoder

1. fuser模块

fuser模块的作用是将LiDARcamera得到的BEV特征进行融合,这里使用的ConvFuser方法将两个BEV特征融合。

x = self.fuser(features)

LiDAR=>[4, 256, 180, 180]camera => [4, 80, 180, 180]进行concat得到 => [4, 336, 180, 180],然后再卷积得到 =>[4, 256, 180, 180],具体代码如下。

class ConvFuser(nn.Sequential):
    def __init__(self, in_channels: int, out_channels: int) -> None:
        self.in_channels = in_channels # [80, 256]
        self.out_channels = out_channels # 256
        super().__init__(
            nn.Conv2d(sum(in_channels), out_channels, 3, padding=1, bias=False),
            nn.BatchNorm2d(out_channels),
            nn.ReLU(True),
        )

    def forward(self, inputs: List[torch.Tensor]) -> torch.Tensor:
        # 先进行concat,然后调用父类的卷积模块
        return super().forward(torch.cat(inputs, dim=1))

融合的结构如下所示:

ConvFuser(
  (0): Conv2d(336, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
)

2. decoder模块

decoder部分由两部分组成,分别是backboneneck,其中backbone使用的是SECONDneck部分使用的是SECONDFPN
在这里插入图片描述

2.1 backbone模块

backbone使用的SECOND,和默认的layer_nums=[3, 5, 5]结构不一样,BEVFusion中使用的layer_nums=[5, 5]。所以backbone只有两个分支,都是5个卷积模块组成。

        outs = []
        for i in range(len(self.blocks)):
            x = self.blocks[i](x)
            outs.append(x)
        return tuple(outs)
  • 分支一:

第一个分支的输入是fuser的输出,它的大小为[4, 256, 180, 180],首先经过第一个Con2d将通道降至128,后面再接5个相同的Con2d提取特征,得到outs[0]的大小为[4, 128, 180, 180]

Sequential(
  (0): Conv2d(256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
  (3): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (4): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (5): ReLU(inplace=True)
  (6): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (7): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (8): ReLU(inplace=True)
  (9): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (10): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (11): ReLU(inplace=True)
  (12): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (13): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (14): ReLU(inplace=True)
  (15): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (16): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (17): ReLU(inplace=True)
)
  • 分支二:

第二个分支的输入是out[0],这个分支首先经过第一个Conv2d,将通道数128上至256,并且将feature map的长和宽都减半至90,然后在经过5个相同的Conv2d提取特征,最后得到特征outs[1]的大小为[4, 256, 90, 90]

Sequential(
  (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
  (3): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (4): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (5): ReLU(inplace=True)
  (6): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (7): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (8): ReLU(inplace=True)
  (9): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (10): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (11): ReLU(inplace=True)
  (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (13): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (14): ReLU(inplace=True)
  (15): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (16): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (17): ReLU(inplace=True)
)

2.2 neck模块

neck的作用是将backbone得到的feature map调整至指定大小[4, 256, 180, 180]

由于backbone得到了两个大小不同的feature map,分别为[4, 128, 180, 180][4, 256, 90, 90],第一个特征使用卷积降低通道数即可,第二个则需要反卷积来提升feature map的大小,实际上源代码也是这么做的。最后将得到两个分支的特征进行concat即可。

        assert len(x) == len(self.in_channels)
        # self.deblocks一共有两个,一个是卷积,一个是反卷积
        ups = [deblock(x[i]) for i, deblock in enumerate(self.deblocks)]
		
		# concat两个分支feature
        if len(ups) > 1:
            out = torch.cat(ups, dim=1)
        else:
            out = ups[0]
        return [out]

self.deblocks中第一个元素的卷积结构如下:

Sequential(
  (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
  (1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
)

self.deblocks中第二个元素的反卷积结构如下:

Sequential(
  (0): ConvTranspose2d(256, 256, kernel_size=(2, 2), stride=(2, 2), bias=False)
  (1): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
  (2): ReLU(inplace=True)
)

将两个分支concat得到的feature map大小为:[4, 512, 180, 180]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值