机器学习和统计学的区别?

在这里插入图片描述

1、本质区别:

  1. 目标:机器学习的核心目标是建立一个可以自动学习和改进的模型,以预测未知数据。它更关注结果的准确性和模型的泛化能力,通常不关心模型是否可以解释。而统计学的目标是探究变量之间的关系,理解数据的内在结构和规律,以及确定这些关系的显著性。它更关注统计量服从什么分布、假设检验是否显著、模型拟合是否合理等问题。
  2. 方法:机器学习通常使用训练数据来训练模型,然后通过测试数据来评估模型的性能。在训练过程中,机器学习算法会自动调整模型的参数,以最小化预测错误。而统计学则更注重模型的构建和解释,通常使用统计方法(如回归、方差分析等)来推断变量之间的关系,并通过置信区间、显著性检验等方法来评估模型的合理性。

2、共同点:

  1. 数据驱动:机器学习和统计学都是以数据为基础的学科,都需要从数据中提取信息并进行推断。
  2. 模型建立:两者都需要建立模型来描述数据。机器学习中的模型通常是参数化的,而统计学中的模型可能是参数化或非参数化的。
  3. 预测和推断:机器学习和统计学都可以用于预测和推断。机器学习模型可以对新数据进行预测,而统计学模型可以用于推断变量之间的关系和预测未来趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值