变点分组法是一种时序数据处理与分段分析的方法

“变点分组法”是一种时序数据处理与分段分析的方法,主要用于检测时间序列中结构或状态发生变化的时刻,即“变点(change point)”。在风电机组状态监测、金融市场分析、工业过程故障检测等领域,这种方法常用于将一段连续的时序数据划分为若干具有一致性特征的区间,从而更精准地建模或诊断。


✅ 一、变点分组法的定义:

变点分组法(Change Point Segmentation Method):是一种根据时间序列中统计特征(如均值、方差、分布形态等)发生显著变化的位置,将序列自动划分为若干段的方法。每一段内部的统计特征保持相对一致,段与段之间则存在显著差异。


✅ 二、主要用途:

应用场景说明
风电机组状态监测用于划分正常-异常-恢复等不同阶段,提高建模准确性
故障诊断预处理有助于提取故障前、中、后的状态演化特征
金融/气象等非平稳数据建模找出趋势突变、市场变盘、天气骤变等关键时刻

✅ 三、常见变点检测算法(用于实现分组):

方法原理特点
CUSUM(累计和)监测均值变化计算简单,适用于突变场景
Bayesian Change Point基于贝叶斯推理判断分段概率可同时检测多个变点
Pelt/Segment Neighborhood/Window-based通过最小化分段损失函数常与动态规划结合
Kernel-based Methods基于核函数度量数据变化适用于非线性场景
深度学习方法如LSTM+注意力机制,预测偏差异常检测可处理高维复杂序列

✅ 四、举个例子:

假设有风电机组的发电功率时间序列:

时间序列:100, 102, 101, 98, 95, 96, 80, 78, 75, 50, 51, 49, 100, 101

通过变点分组法,可能检测到3个变点,分成4段:

  • 第一段(正常):100, 102, 101, 98, 95, 96
  • 第二段(轻度故障):80, 78, 75
  • 第三段(严重故障):50, 51, 49
  • 第四段(恢复):100, 101

✅解释变点位置(索引):

变点通常是序列中数值分布发生显著变化的位置,在这个例子中,我们可以这样划分:

段编号数据区间对应位置索引说明
第1段[100, 102, 101, 98, 95, 96]索引0–5正常运行阶段(均值高,波动小)
第2段[80, 78, 75]索引6–8轻度故障(明显下降)
第3段[50, 51, 49]索引9–11严重故障(进一步下降)
第4段[100, 101]索引12–13恢复状态(恢复至初始水平)

✅ 所以,真正的变点是:

  • 第1个变点:从索引5 → 6(96 → 80)
  • 第2个变点:从索引8 → 9(75 → 50)
  • 第3个变点:从索引11 → 12(49 → 100)

➡️这三个点,是时序结构发生“明显跳变”的节点,就是我们说的变点(Change Points)


✅ 五、变点分组后的优势:

  • 每段内部更“稳定”,便于建模
  • 可构建“状态转移图”,分析故障演化路径
  • 有助于归因分析和预测未来变化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值