[省选前题目整理][BZOJ 1009][HNOI 2008]GT考试(KMP+DP+矩阵快速幂)

142 篇文章 0 订阅
98 篇文章 0 订阅

题目链接

http://www.lydsy.com/JudgeOnline/problem.php?id=1009

思路

考虑如何用暴力DP来做这个题。实际上就是顺着DP的过程进行了S串与T串的字符串匹配过程。
f[i][j]= DP到S串的第 i 位,匹配到了危险串的第j位,这样的不同的S串前 i 位种类数。
很容易得到一个DP方程

f[i+1][t]=f[i][j],i+1Titi+1[0,9]

进一步发现,对于任意的 i ,DP转移是一样的,因此我们就可以把i这一维度的DP状态略去,只剩下匹配到危险串的哪一位这个状态,然后我们把每个状态看成有向图中的一个结点,状态之间存在转移就连边权为1的边,问题转化为在这个有向图上,用了时间 n 个单位,从结点0走到结点t,t<m的方案总数。这个问题可以通过矩阵快速幂在 O(logn) 时间内求得。

基本上所有的可用矩阵快速幂加速DP的问题都是可以用这样的思考方式解决。

代码

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

#define MAXN 100

using namespace std;

int MOD;
int n,m;

struct Matrix
{
    int n,m;
    int num[MAXN][MAXN];
    Matrix()
    {
        n=m=0;
        memset(num,0,sizeof(num));
    }
}one,a;

char str[MAXN];
int next[MAXN];

void KMP() //构造next指针
{
    int j=0;
    for(int i=2;i<=m;i++)
    {
        while(j&&str[j+1]!=str[i]) j=next[j];
        if(str[j+1]==str[i]) j++;
        next[i]=j;
    }
}

Matrix operator*(Matrix a,Matrix b)
{
    Matrix c;
    c.n=a.n,c.m=b.m;
    for(int k=0;k<a.m;k++)
        for(int i=0;i<c.n;i++)
            for(int j=0;j<c.m;j++)
                c.num[i][j]=(c.num[i][j]+a.num[i][k]*b.num[k][j]%MOD)%MOD;
    return c;
}

Matrix fastPow(Matrix base,int pow)
{
    Matrix ans=one;
    while(pow)
    {
        if(pow&1) ans=ans*base;
        base=base*base;
        pow>>=1;
    }
    return ans;
}

int main()
{
    scanf("%d%d%d",&n,&m,&MOD);
    scanf("%s",str+1);
    KMP();
    one.n=one.m=a.n=a.m=m;
    for(int i=0;i<m;i++) one.num[i][i]=1;
    for(int i=0;i<m;i++)
        for(char j='0';j<='9';j++)
        {
            int t=i;
            while(t>0&&str[t+1]!=j) t=next[t]; //模拟KMP的匹配过程,加入新的字符j
            if(str[t+1]==j) t++;
            if(t!=m) //没有全部匹配完,就包含不了危险子串,可以作为转移
                a.num[i][t]=(a.num[i][t]+1)%MOD; //a.num[i][j]=T串从匹配到位置i到匹配到位置j的方案数
        }
    a=fastPow(a,n);
    int ans=0;
    for(int i=0;i<m;i++)
        ans=(ans+a.num[0][i])%MOD;
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值