量子力学本征态

本文深入探讨了量子力学中的本征态概念,揭示了它们在量子系统中的核心作用。通过解析本征态的数学定义,阐述了它们如何帮助理解和预测粒子行为,以及在量子计算和量子信息科学中的应用。
摘要由CSDN通过智能技术生成

  1.   本征态
  • 对应于量子力学中,能量量子化。
  • 波函数是一个系统各种可能的状态的叠加,比如,一个电子自旋系统,只有自旋向上或者向下(两个基矢(s1,0),(0,s2)),这个系统的本征态就是上或者下。这个系统的波函数不过是这两个本征态不同权重的叠加而已。
  1.  本征值

一矢量(及其反向矢量)代表一个态,一组基矢代表一组完备的基础态,一矢量在一基矢上的投影(即标积)是个复数,代表某态在此基础态上测得的复数概率。投影不是代表本征值。本征值是指一个对矢量的一种操作(即矩阵等算符,代表一个物理测量),这个操作通常把一个矢量变为另一个矢量,而对一些特殊矢量,这种操作仅改变矢量的长度,不改变矢量的方向(变为反方向不算改变方向),那么这些特殊的矢量就是这种操作的本征矢量。改变长度的倍数就是本征值。

 

例如,平面直角坐标系,一个对位置矢量的操作如下:【把一个矢量变为以水平轴为对称轴的镜像矢量,再缩短为原长1/2】。这个操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值