量子力学中叠加态、本征态、混合态、纯态、纠缠态、直积态的区别(百度整理来的)
量子究竟是个什么鬼?难道是比原子、电子更小的粒子吗?其实不是。量子跟原子、电子根本不能比较大小,因为它的本意是一个数学概念,就是“离散变化的最小单元”。离散变化是微观世界的一个本质特征,准确描述微观世界的物理学理论就是“量子力学”。
- 在经典力学的系统里,任何可以用实验测量获得的可观察量,都可以用定义于物理系统状态的实函数来表示。
- 在量子力学里,物理系统的状态称为量子态,其与可观察量的关系更加微妙,必须使用线性代数来解释。
- 【量子态】可以用存在于希尔伯特空间的态矢量来代表,【量子态的可观察量】可以用厄米算符来代表。
1 【叠加态、本征态】:
- 是针对单个粒子而言。
- 量子态又被称作“态矢量”,或“态函数”,和经典的矢量相比很相似,例如:“东北方”是“东”和“北”的叠加,随着我们选取不同的坐标系,任何一个方向矢量都是其他基底的叠加。相似地,任何量子态也都是一组基底态的叠加。可以说,叠加态并非量子力学独有,也符合经典力学。
- 一个系统处于某个状态,对其进行多次测量,得到的结果不是一个确定的值,而是若干值的一个分布,那么这个态就处于叠加态。
- 叠加态就是一个量子体系所有可以被测量到的量子态而构成的波函数的线性组合。波函数是一个描述量子态的普适函数,但其中能被测量到的只是一些非连续的值。这些可被测量的值构成的波函数就是本征函数,这些本征函数构成的线性组合形式仍然满足薛定谔方程的解。这种不同本征态构成的量子态就是叠加态。例如,薛定谔的猫,“死”和“活”都是可以被测量到的状态(本征态),因此,“死”+“活”的线性组合就是薛定谔猫的量子态(叠加态),叠加态是本征态的线性组合。(我理解:线性组合就是每个本征态出现概率的连续值组合,属于概率统计学。测量出来的值就是本征态,叠加态不可测量)。薛定谔的猫在未打开盒子时是既死又活的叠加态,打开(测量)那一刻坍缩到死或活的单一状态(本征态),在测量之前是无法预测会是哪一种状态,这就是学界说的上帝掷筛子,即测不准原则。薛定谔的猫只是一个方便三次元世界普通人理解量子力学的简单假设,要真正理解量子力学必须理解相关公式。
- 任何没被测量或观察的微观粒子都处于叠加态,就是既是A,又是B。
- 双缝干涉实验,电子未被观测之前是波的形态传递,被观测后坍缩到粒子的形态
- 在量子信息中,经常把两个基本状态写成|0>和|1>。而|0>和|1>的线性叠加,就是a|0> + b|1>,其中a和b是两个数。“线性”意味着用一个数乘以一个状态,“叠加”意味着两个状态相加,所以“线性叠加”就是把两个状态各自乘以一个数后再加起来。
- 叠加原理说的是:如果一个体系能够处于|0>和处于|1>,那么它也能处于任何一个a|0> + b|1>,这样的状态称为“叠加态”。这里a和b可以取任何数,对它们唯一的限制,就是它们的绝对值的平方和等于1,即|a|2+ |b|2 = 1。
2 【混合态、纯态】:
- 是针对多个粒子(系统)而言。
- 可分的态是纯态(叠加态是有别于本征态的一种纯态);不可分的是混合态(例如纠缠态)。
3 【纠缠态、直积态】:
- 量子纠缠是量子力学独有的特性,没有任何经典与之对应。
- 纠缠态只在多粒子情况出现,系统中至少有两个及以上的粒子或子系统组合而成。
- 假设一个零自旋中性π介子衰变成一个电子与一个正电子。他们各自朝着相反方向移动,测量他们会发现:电子沿着某特定轴向自旋,而正电子也沿着同样轴向反向自旋,这两个纠缠粒子共同形成了零自旋的“纠缠态”,这是两个直积态的叠加。两个纠缠粒子共同形成的态叫纠缠态。在测量之前是无法知道两个粒子的自旋方向,这是测不准原则,但只要知道一个粒子的自旋方向,就可以确定另一个粒子的自旋方向(相反的状态)
- 双粒子或多粒子体系中,粒子间可能处于纠缠态,纠缠态是一种关系,若A变,B就随着变。有偏振纠缠,自旋纠缠,"颜色"纠缠等等。
- 量子力学的精髓在于测量的结果是随机的,你不能控制。
- 拿出一个二元函数F(x, y),你来试着把它写成一个关于x的函数f(x)与一个关于y的函数g(y)的乘积,也就是说,寻找f(x)和g(y),使得F(x, y)= f(x) g(y)。如果可以,我们就说F(x, y)是可以“分离变量”的。如果不行,我们就说它不能分离变量。在量子力学中,体系的状态(没错,就是前面说的态矢量)可以用一个函数来表示,称为“态函数”(是的,你既可以把它理解为一个函数,也可以把它理解为一个矢量,两者不矛盾,怎么方便怎么来)。单粒子体系的态函数是一元函数,多粒子体系的态函数是多元函数。如果这个多元函数可以分离变量,也就是可以写成多个一元函数直接的乘积,我们就把它称为“直积态”。如果它不能分离变量,我们就把它称为“纠缠态”。
4 【其他】
2022年诺贝尔物理学奖授予法国物理学家阿兰·阿斯佩(Alain Aspect)、美国理论和实验物理学家约翰·弗朗西斯·克劳泽(John F. Clauser) 和奥地利物理学家安东·塞林格(Anton Zeilinger),他们通过光子纠缠实验,确定贝尔不等式在量子世界中不成立
看下面的文章你才会懂得更多:
https://blog.sciencenet.cn/blog-3277323-1090804.html
https://blog.sciencenet.cn/blog-3277323-1091723.html
https://blog.sciencenet.cn/blog-3277323-1093929.html
https://blog.sciencenet.cn/blog-3277323-1101621.html
https://blog.sciencenet.cn/blog-3277323-1116500.html