Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1 8 4 4 7
Sample Output
0 1 0
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk=ak + k (k=0,1,2,…,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,
①先求出 k =a(√5-1)/2,若a=(int) (k(1+√5)/2 ), 那么a = ak,bk= ak + k,若不等于,那么a = ak+1,bk+1 = ak+1+ k + 1,
若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。
<pre name="code" class="cpp">#include <iostream>
#include <cmath>
using namespace std;
int main()
{
long long a,b,i;
double t=(sqrt(5)+1)*1.0/2.0;
while(cin>>a>>b)
{
if(a==0&&b==0) break;
if(a>b)
{
a=a+b;
b=a-b;
a=a-b;
}
long long k=b-a;
if(a==(int)(t*k))
cout<<"0"<<endl;
else
{
cout<<"1"<<endl;
}
}
return 0;
}