威佐夫博弈(2堆)应用-- HDU 1527 取石子游戏

Problem Description

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

 

 

Input

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

 

 

Output

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

 

 

Sample Input

 

2 1 8 4 4 7

 

 

Sample Output

 

0 1 0

 

 

那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k(1+√5)/2],bk=ak + k  (k=0,1,2,…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1。618…,因此,由ak,bk组成的矩形近
似为黄金矩形,由于2/(1+√5)=(√5-1)/2,

①先求出 k =a(√5-1)/2,若a=(int) (k(1+√5)/2 ), 那么a = ak,bk= ak + k,若不等于,那么a = ak+1,bk+1 = ak+1+ k + 1,

若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异
局势。

 

<pre name="code" class="cpp">#include <iostream>  
#include <cmath>  
using namespace std;  
  
int main()  
{  
    long long a,b,i;  
    double t=(sqrt(5)+1)*1.0/2.0;  
    while(cin>>a>>b)  
    {  
        if(a==0&&b==0) break;  
        if(a>b)  
        {  
            a=a+b;  
            b=a-b;  
            a=a-b;  
        }  
        long long k=b-a;  
        if(a==(int)(t*k))   
            cout<<"0"<<endl;  
        else  
        {  
            cout<<"1"<<endl; 

        }
     }
     return 0;
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值