数论---约数(求约数,约数之和,约数个数,最大公约数)

求约数 

  

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int n;
void get(int x)
{
	vector<int> q;
	for (int i = 1;i <= x / i;i++)
	{
		if (x % i == 0)
		{
			q.push_back(i);
			if(i!=x/i)	//避免重复放入
				q.push_back(x / i);
		}
	}
	sort(q.begin(), q.end());
	for (int i = 0;i < q.size();i++)
		cout << q[i] << ' ';
	cout << '\n';
}
int main()
{
	cin >> n;
	while (n--)
	{
		int a;
		cin >> a;
		get(a);
	}
}

 约数个数

#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
const int MOD=1e9+7;
/*运用约数的个数的定理:
我们只要记录每一个数的质因子的个数和他们相应的质数----->应用求质因子算法
然后把他们相加
最后用组合数学,就可以得出他们的乘积的约数个数
*/
unordered_map <int, int> mp;
void get(int a)
{
	for (int i = 2;i <= a / i;i++)
		if (a % i == 0)
		{
			int s = 0;
			while (a % i == 0)
			{
				a /= i;
				s++;
			}
			mp[i] += s;
		}
	if (a > 1) mp[a]++;
}
typedef long long ll;
int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		int a;
		cin >> a;
		get(a);
	}
	ll res = 1;
	for (auto t : mp)
	{
		res =(res* (t.second + 1))%MOD;
	}
	cout << res;
}

约数之和

 

t=t*a+1的意义

#include <iostream>
#include <algorithm>
#include <unordered_map>
using namespace std;
/*运用约数的个数的定理:
我们只要记录每一个数的质因子的个数和他们相应的质数----->应用求质因子算法
然后把他们相加
最后用组合数学,就可以得出他们的乘积的约数个数
*/
const int mod = 1e9 + 7;
unordered_map <int, int> mp;
void get(int a)
{
	for (int i = 2;i <= a / i;i++)
		if (a % i == 0)
		{
			int s = 0;
			while (a % i == 0)
			{
				a /= i;
				s++;
			}
			mp[i] += s;
		}
	if (a > 1) mp[a]++;
}
typedef long long ll;
int main()
{
	int n;
	cin >> n;
	while (n--)
	{
		int a;
		cin >> a;
		get(a);
	}
	ll res = 1;
	for (auto t : mp)
	{
		ll q = 1;
		ll a = t.first, b = t.second;
		//可能会爆int,转化为ll
		while (b--)
			q = (q * a + 1) % mod;
		//这里用模拟乘法也可以,直接用等比数列求和会爆int,不建议
		res = (res * q) % mod;
	}
	cout << res % mod;
}

最大公约数

最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。

方法:辗转相除法

(a,b)=(b,a%b)                a和b的最大公约数和约数=b和a%b的最大公约数和约数

证明

#include <iostream>
using namespace std;

int gcd(int a,int b)
{
    if(!b)  //b==0
        return a;
    else
        return gcd(b,a%b);
}

int main()
{
    int n;
    cin>>n;
    while(n--)
    {
        int a,b;
        cin>>a>>b;
        cout<<gcd(a,b)<<endl;
    }
}

 关于最大公约数的定理

        裴蜀定理:ax+by=d;        a,b是任意常数        d是a和b的最大公约数的倍数

在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理。裴蜀定理得名于法国数学家艾蒂安·裴蜀,说明了对任何整数a、b和它们的最大公约数d,关于未知数x和y的线性丢番图方程(称为裴蜀等式):

  ax + by = m

  有解当且仅当m是d的倍数。裴蜀等式有解时必然有无穷多个整数解,每组解x、y都称为裴蜀数,可用辗转相除法求得。

  例如,12和42的最大公因子是6,则方程12x + 42y = 6有解。事实上有(-3)×12 + 1×42 = 6及4×12 + (-1)×42 = 6。

  特别来说,方程 ax + by = 1 有解当且仅当整数a和b互素。

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值