数论——约数讲解

约数讲解

约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。

试除法求约数

  1. 算法思想:
    假设求n的约数,枚举1 ~ n中的每个数i,如果 n % i == 0 ,则说明i是n的一个约数。
  2. 优化:
    若d | n,则d是n的约数,同理 (n / d)| n,则n / d也是n的一个约数,所以只需要枚举min(d, n / d)中的数,即可得到所有约数,同时注意d == n / d的情况

例题

给定 n 个正整数 ai,对于每个整数 ai,请你按照从小到大的顺序输出它的所有约数。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出共 n 行,其中第 i 行输出第 i 个整数 ai 的所有约数。

数据范围
1≤n≤100,
2≤ai≤2×10^9
输入样例:
2
6
8
输出样例:
1 2 3 6
1 2 4 8
难度:简单
时/空限制:1s / 64MB
此处给出核心代码

def get_divisor(x) :
	i = 1
	res = []
	while i <= x // i :
		if x % i == 0 :
			res.append(i)
			if  x // i != i :
				res.append(x // i)
		i += 1
	res.sort()
	return res

倍数法求1~N每个数的正约数集合

思路

对于每个数d,1~N中以d为约数的数就是d的倍数。
d , 2 d , 3 d , . . . , N / / d ∗ d d, 2d, 3d,...,N // d * d d,2d,3d,...,N//dd

代码

N = 500010
factor = [[] for _ in range(N)]

n = int(input())
# 枚举以i作为约数的倍数
for i in range(1, n + 1) :
	for j in range(1, n // i + 1) :
		factor[i * j].append(i)
for i in range(1, n + 1) :
	for j in factor[i] :
		print(j, end = " ")
	print()

约数的个数

约数个数定理

对于一个大于1正整数n可以分解质因数:在这里插入图片描述

则n的正约数的个数就是在这里插入图片描述
其中a1、a2、a3…ak是p1、p2、p3,…pk的指数。

例题

给定 n 个正整数 ai,请你输出这些数的乘积的约数个数,答案对 10^9+7 取模。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出一个整数,表示所给正整数的乘积的约数个数,答案需对 10^9+7 取模。

数据范围
1≤n≤100,
1≤ai≤2×10^9
输入样例:
3
2
6
8
输出样例:
12
难度:简单
时/空限制:1s / 64MB

MOD = int(1e9) + 7
n = int(input())
prime = dict()

def get_prime(x) :
	i = 2
	while i <= x // i :
		while x % i == 0 :
			x //= i
			prime[i] = prime.get(i, 0) + 1
		i += 1
	if x > 1 :
		prime[x] = prime.get(x, 0) + 1
for i in range(n) :
	a = int(input())
	get_prime(a)

res = 1
for value in prime.values() :
	res = res * (value + 1) % MOD
print(res)	

约数的和

约数和定理

由算数基本定理可知,对于一个大于的正整数可以分解质因数:在这里插入图片描述,
则由约数个数定理可知的正约数有个在这里插入图片描述
那么的个正约数的和为在这里插入图片描述.
在这里插入图片描述

例题给定 n 个正整数 ai,请你输出这些数的乘积的约数之和,答案对 109+7 取模。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数 ai。

输出格式
输出一个整数,表示所给正整数的乘积的约数之和,答案需对 109+7 取模。

数据范围
1≤n≤100,
1≤ai≤2×109
输入样例:
3
2
6
8
输出样例:
252

MOD = int(1e9) + 7
n = int(input())
prime = dict()

def get_prime(x) :
	i = 2
	while i <= x // i :
		while x % i == 0 :
			x //= i
			prime[i] = prime.get(i, 0) + 1
		i += 1
	if x > 1 :
		prime[x] = prime.get(x, 0) + 1
for i in range(n) :
	a = int(input())
	get_prime(a)

res = 1
for key, value in prime.keys() :
	t = 1
	for i in range(value) :
		t = (t * key + 1) % MOD
	res = (res * t) % MOD
	
print(res)	

最大公约数(欧几里得算法)

定义

两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。最大公约数(Greatest Common Divisor)缩写为GCD。
gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0)

证明

a可以表示成a = kb + r(a,b,k,r皆为正整数,且r
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d,由等式右边可知m=r/d为整数,因此d|r
因此d也是b,a mod b的公约数。
因(a,b)和(b,a mod b)的公约数相等,则其最大公约数也相等,得证。

例题

给定 n 对正整数 ai,bi,请你求出每对数的最大公约数。

输入格式
第一行包含整数 n。

接下来 n 行,每行包含一个整数对 ai,bi。

输出格式
输出共 n 行,每行输出一个整数对的最大公约数。

数据范围
1≤n≤105,
1≤ai,bi≤2×109
输入样例:
2
3 6
4 6
输出样例:
3
2

n = int(input())

def gcd(x, y) :
	return x if y == 0 else gcd(y, x % y)

for i in range(n) :
	a,b = map(int, input().split())
	print(gcd(a, b))

Python条件表达式

在这里插入图片描述

<expr1> if <condition> else <expr2>

总结

对于一个数来说只要掌握了其质因数和质因数个数,就相当于知道了这个数的所有性质。这对求解约数个数和约数和很有帮助。
欧几里得算法,真的很简洁,以上写法中不用在乎输入的a与b的大小

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值