智能溺水检测系统
本代码库提供了一套基于深度学习模型的自动化溺水检测综合解决方案。我们的研究致力于通过快速识别水域环境中的危险状况,彻底革新溺水事件响应系统。
技术方案亮点
我们通过严格的模型优化实现了精准的溺水检测:
- 初始模型训练:基于YOLO v8架构的首轮训练未达理想检测效果
- 数据集分析:通过整合Roboflow Universe平台的Team Burraq辅助数据集,显著提升了模型对多样化溺水场景的识别能力
- 精度优化训练:针对初期检测缺陷,我们在新增数据集上进行了20个epoch的精细调优,检测准确率与灵敏度获得显著提升(详见检测效果图)
核心功能
- 数据采集与清洗:精选多源权威数据集,全面覆盖各类溺水场景
- 模型选型与调优:采用YOLO v8架构进行针对性优化,专注提升溺水检测精度
- 多源数据融合:整合辅助数据集强化模型对复杂场景的解析能力
- 算法实现:基于Ultralytics库实现高效模型加载与图像分析
- 空间坐标计算:创新性坐标定位算法提升目标物空间定位精度
- 实时监控集成:推进与泳池摄像头及深度传感器的系统集成,实现实时空间分析
- 总结与展望:系统评估准确率提升效果,提出实时检测系统的未来优化方向
采用数据集
- 主数据集数据集平台
- 辅助数据集:Team Burraq数据集
检测效果示例
(包含WhatsApp Image 2023-12-10 at 12:38:25 PM (1)及12:37:08 PM的检测对比图)
使用说明
本代码库提供完整的智能溺水检测实现方案与详细操作指南。