智慧农业之石榴成熟度检测识别数据集 石榴花 十六早期结果等5阶段图像识别数据集 石榴成熟度检测 水果成熟度检测 yolo个是数据集第10162期

部署运行你感兴趣的模型镜像

石榴相关数据集核心信息简介

在这里插入图片描述
在这里插入图片描述

数据集关键信息总览

信息类别具体内容
数据集类别目标检测类数据集,聚焦石榴生长阶段,含bud(芽)、early-fruit(早期果实)等类别
数据集数量总图像数5855张,分为训练集4098张、验证集1171张、测试集586张,关联1个数据集与1个模型
数据格式图像文件为jpg格式(如006073255.jpg,分辨率480x640),标注数据含XML原始格式与JSON转换格式
最重要应用价值助力石榴生长阶段识别模型训练,可用于农业生产中石榴生长状态监测、产量预估等场景

在这里插入图片描述
在这里插入图片描述

数据集类别关键信息

该数据集属于目标检测类,专门围绕石榴生长过程设置类别。除已标注的early-fruit(早期果实)外,还包含bud(芽)、flower(花)、mid-growth(中期生长果实)、ripe(成熟果实)等未使用类别,能针对性捕捉石榴不同生长阶段特征。

数据集数量关键信息

数据集规模可观,总计5855张图像。按模型训练需求拆分,训练集4098张为模型学习提供充足样本,验证集1171张用于调整模型参数,测试集586张可检验模型实际检测效果,各部分数量搭配合理,支撑模型全流程开发。

您可能感兴趣的与本文相关的镜像

Yolo-v8.3

Yolo-v8.3

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

数据集介绍:农业水果成熟度与状态检测数据集 一、基础信息 数据集名称:农业水果成熟度与状态检测数据集 数据规模: - 训练集:5,719张图片 - 验证集:1,630张图片 - 测试集:806张图片 分类类别: - 香蕉:新鲜/成熟/腐烂/未成熟 - 苹果:新鲜/成熟/腐烂/未成熟 - 橙子:新鲜/成熟/腐烂/未成熟 - 番茄:新鲜/成熟/腐烂/未成熟 标注格式: YOLO格式边界框标注,支持目标检测任务 数据格式:JPEG/PNG农业现场采集图像,涵盖自然光照和复杂背景条件 二、适用场景 智能农业分拣系统: 通过目标检测识别水果成熟状态,实现自动化分级分拣,提升农产品加工效率 农业监测管理: 辅助农户判断最佳采收时机,监控仓储水果质量状态,减少经济损失 食品质量评估: 为超市/供应链提供自动化质量检测方案,识别腐败变质产品 农业教育研究: 提供多品种水果生长周状态标注数据,支持农业AI教学与算法研究 三、数据集优势 品种覆盖全面: 包含香蕉、苹果、橙子、番茄四大类农产品,覆盖16种细分状态类别 状态维度完整: 每个品类均包含新鲜/成熟/腐烂/未成熟完整生命周状态样本 场景真实性强: 采集自真实农业场景,包含复杂背景、堆叠目标、光照变化等实际工况 开发适配度高: YOLO格式标注兼容主流检测框架,完整划分训练/验证/测试集支持全流程开发
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值