题目描述
人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:
有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.
以上就是著名的RPG难题.
我想你一定会想尽办法帮助LELE解决这个问题的。
输入
输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0<n<=50)。
输出
对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。
输入输出样例
输入样例1 <-复制
1
2
输出样例1
3
6
解题思路
首先易知f(1)=3;f(2)=6;f(3)=6;f(4)=18;
现在考虑n>3的情况,若第n-1个格子和第一个格子不同,则为f(n-1);
若第n-1个格子和第1个格子相同,【则第n-2个格子和第一个格子必然不同,】
此时为f(n-2)再乘第n-1个格子的颜色数,
很显然第n-1个格子可以是第一个格子(即第n-2个格子)的颜色外的另外两种,
这样为2*f(n-2);
因此总的情况为f(n)=f(n-1)+2*f(n-2);
注意:当n=3的时候,n-2就是第一个格子,因此不符合讨论中的设定 ,即【】中的内容;
因此要取n>=4
AC代码
#include<stdio.h>
int main()
{
int i, n;
int a[51];
a[0] = 0, a[1] = 3, a[2] = 6, a[3] = 6;
for (i = 4; i <= 50; i++)
a[i] = a[i - 1] + a[i - 2] * 2; // 核心规律
while (scanf("%d", &n) != EOF)
{
printf("%d\n", a[n]);
}
return 0;
}
首先给出了前4个格子的涂法数量:a[1]=3, a[2]=6, a[3]=6, a[4]=18。
然后使用循环计算出从5到50个格子的涂法数量,根据核心规律 a[i] = a[i-1] + 2 * a[i-2]。
最后,通过循环读取输入的测试实例的个数n,输出对应的满足要求的涂法数量a[n]。
(by 归忆)