【id:302】【20分】E. LELE的RPG难题(递归)

文章描述了一种RPG难题,涉及在一行方格中用三种颜色涂色,遵循特定规则。给出了前几个格子的涂法数量,并提出了一个递推公式f(n)=f(n-1)+2*f(n-2)用于计算更多格子的涂法。AC代码示例展示了如何用C语言实现这个算法来处理不同数量的格子情况。
摘要由CSDN通过智能技术生成

题目描述

人称“AC女之杀手”的超级偶像LELE最近忽然玩起了深沉,这可急坏了众多“Cole”(LELE的粉丝,即"可乐"),经过多方打探,某资深Cole终于知道了原因,原来,LELE最近研究起了著名的RPG难题:

有排成一行的n个方格,用红(Red)、粉(Pink)、绿(Green)三色涂每个格子,每格涂一色,要求任何相邻的方格不能同色,且首尾两格也不同色.求全部的满足要求的涂法.

以上就是著名的RPG难题.

我想你一定会想尽办法帮助LELE解决这个问题的。

输入

输入数据包含多个测试实例,每个测试实例占一行,由一个整数N组成,(0<n<=50)。

输出

对于每个测试实例,请输出全部的满足要求的涂法,每个实例的输出占一行。

输入输出样例

输入样例1 <-复制
1
2

输出样例1
3
6

解题思路

首先易知f(1)=3;f(2)=6;f(3)=6;f(4)=18;

现在考虑n>3的情况,若第n-1个格子和第一个格子不同,则为f(n-1);

若第n-1个格子和第1个格子相同,【则第n-2个格子和第一个格子必然不同,】 
此时为f(n-2)再乘第n-1个格子的颜色数,
很显然第n-1个格子可以是第一个格子(即第n-2个格子)的颜色外的另外两种,
这样为2*f(n-2);

因此总的情况为f(n)=f(n-1)+2*f(n-2); 

注意:当n=3的时候,n-2就是第一个格子,因此不符合讨论中的设定 ,即【】中的内容;
因此要取n>=4 

AC代码

#include<stdio.h>

int main()
{
	int i, n;
	int a[51];
	a[0] = 0, a[1] = 3, a[2] = 6, a[3] = 6;

	for (i = 4; i <= 50; i++)
		a[i] = a[i - 1] + a[i - 2] * 2;	// 核心规律 

	while (scanf("%d", &n) != EOF)
	{
		printf("%d\n", a[n]);
	}

	return 0;
}

首先给出了前4个格子的涂法数量:a[1]=3, a[2]=6, a[3]=6, a[4]=18。

然后使用循环计算出从5到50个格子的涂法数量,根据核心规律 a[i] = a[i-1] + 2 * a[i-2]。

最后,通过循环读取输入的测试实例的个数n,输出对应的满足要求的涂法数量a[n]。

(by 归忆) 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归忆_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值