【id:702】【10分】E. 社交网络图中结点的“重要性”计算

文章描述了一种衡量社交网络中节点重要性的指标——紧密度中心性,并提供了计算特定节点紧密度中心性的算法。给定无权无向图的边信息和一组节点,程序需输出这些节点的紧密度中心性值。
摘要由CSDN通过智能技术生成

题目描述

在社交网络中,个人或单位(结点)之间通过某些关系(边)联系起来。他们受到这些关系的影响,这种影响可以理解为网络中相互连接的结点之间蔓延的一种相互作用,可以增强也可以减弱。而结点根据其所处的位置不同,其在网络中体现的重要性也不尽相同。

“紧密度中心性”是用来衡量一个结点到达其它结点的“快慢”的指标,即一个有较高中心性的结点比有较低中心性的结点能够更快地(平均意义下)到达网络中的其它结点,因而在该网络的传播过程中有更重要的价值。在有N个结点的网络中,结点v​i​​的“紧密度中心性”Cc(v​i​​)数学上定义为v​i​​到其余所有结点v​j​​ (j≠i) 的最短距离d(v​i​​,v​j​​)的平均值的倒数:

对于非连通图,所有结点的紧密度中心性都是0。

给定一个无权的无向图以及其中的一组结点,计算这组结点中每个结点的紧密度中心性。

输入

输入第一行给出两个正整数N和M,其中N(≤10​4​​)是图中结点个数,顺便假设结点从1到N编号;

M(≤10​5​​)是边的条数。随后的M行中,每行给出一条边的信息,即该边连接的两个结点编号,中间用空格分隔。

最后一行给出需要计算紧密度中心性的这组结点的个数K(≤100)以及K个结点编号,用空格分隔。

输出

按照Cc(i)=x.xx的格式输出K个给定结点的紧密度中心性,每个输出占一行,结果保留到小数点后2位。

输入输出样例

输入样例1 <-复制
9 14
1 2
1 3
1 4
2 3
3 4
4 5
4 6
5 6
5 7
5 8
6 7
6 8
7 8
7 9
3 3 4 9

输出样例1
Cc(3)=0.47
Cc(4)=0.62
Cc(9)=0.35



//后台数据,coding完提交一直都是【部分正确】再看,否则对你没好处
输入样例2
5 8
1 2
1 3
1 4
2 3
3 4
4 5
2 5
3 5
2 4 3

输出样例2
Cc(4)=0.80
Cc(3)=1.00


输入样例3
6 8
1 2
1 3
1 4
2 3
3 4
4 5
2 5
3 5

输出样例3
Cc(4)=0.00
Cc(3)=0.00

AC代码

#include<iostream>
#include<iomanip>
using namespace std;

int over(int** zu,int n)
{
	int i, j;
	for (i = 1; i <= n; i++)
		for (j = 1; j <= n; j++)
			if (zu[i][j] == -1)
				return 0;
	return 1;
}

void juli(int** zu,int n)
{
	int ji = 1;
	int i, j;
	int k;
	while (!over(zu, n)) 
	{
		for (i = 1; i <= n; i++)
			for (j = 1; j <= n; j++)
			{
				if (zu[i][j] == -1)
				{
					for (k = 1; k <= n; k++)
					{
						if (zu[i][k] == ji && zu[k][j] == 1)
						{
							zu[i][j] = ji + 1;
						}
					}
				}
			}
		ji++;
	}
}

double zhi(int** zu, int n,int x)
{
	int j;
	double shu = 0;
	for (j = 1; j <= n; j++)
		shu += zu[x][j];
	double k = n - 1;
	if (shu == 0)
		return 0;
	return k/shu;
}

int duli(int** zu, int i, int n)
{
	int j;
	for (j = 1; j <= n; j++)
		if (zu[i][j] == 1)
			return 0;
	return 1;
}

int main()
{
	int n, m;
	cin >> n >> m;
	int** zu = new int* [n+1];
	int i;
	for (i = 1; i <= n; i++)
		zu[i] = new int[m + 1];

	int j;
	for (i = 1; i <= n; i++)
		for (j = 1; j <= n; j++)
		{
			zu[i][j] = -1;
			if (i == j)
				zu[i][j] = 0;
		}


	int t = m;
	while (t--)
	{
		int a, b;
		cin >> a >> b;
		zu[a][b] = 1;
		zu[b][a] = 1;
	}
	for (i = 1; i < n; i++)
		if (duli(zu, i, n))
		{
			for (i = 1; i <= n; i++)
				for (j = 1; j <= n; j++)
					zu[i][j] = 0;
		}
	juli(zu,n);

	int k;
	cin >> k;
	while (k--)
	{
		int x;
		cin >> x;
		cout << "Cc(" << x << ")=" << setiosflags(ios::fixed)<<setprecision(2) << zhi(zu, n,x) << endl;
	}
}

(by 归忆) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归忆_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值