【深圳大学大物实验】单摆的研究

一、实验目的

用单摆测定当地的重力加速度

二、实验原理

当单摆角很小时 (α<5°),单摆的运动为简谐运动,单摆周期T:

变换式子得

其中g为重力加速度,L为摆长,T为单摆周期,w为角速度。

测量一定长度单摆的周期,可计算g。

当摆角较大时,简谐近似失效,因此需要控制摆角偏小。

三、实验仪器

长约1m的无弹力细线一根,毫米刻度尺,小球,手机(装有phyphox软件)

四、实验内容

手机摆实验:

1.将细绳一端固定在竖直墙面上,另一端固定在手机上,让手机面与墙面平行,做成一个摆。

2.打开软件,下拉菜单找到mechanics下的Pendulum,让手机偏离平衡位置一个小角度,点击运行按钮,放手后,软件会根据陀螺仪测量的数据自动记录单摆的周期和频率。

3.软件设置了几个功能:Results栏目可以反馈单摆的周期和频率;G栏目中可以输入摆长,系统会自动计算重力加速度g;Length栏目中,默认g值为9.81 m/s2,系统会自动计算摆长。

4.注意:测量摆长时,应从悬点的位置测量到手机的中心。

研究单摆周期与摆长的关系:

摆角较小时,根据公式,单摆的周期与摆长的平方根成正比。

设计实验方法验证这一关系,同时思考小球质量、初始振幅对测量结果的影响。

需测量的数据:摆长不同时,单摆的的周期

五、数据记录

手机摆实验:

测量次数

摆长l(mm)

周期Ts

频率(Hz

gm/s^2)

1

218

0.98

1.02

9.02

2

218

0.93

1.07

9.85

3

218

0.96

1.04

9.35

4

218

0.97

1.04

9.23

5

218

0.96

1.04

9.35

研究单摆周期与摆长的关系:

测量次数

摆长l(mm)

周期Ts

根号l

频率(Hz

gm/s^2)

1

423

1.29

20.57

0.78

10.09

2

286

1.07

16.92

0.94

9.95

3

354

1.16

18.81

0.86

10.38

4

378    

1.19

19.44

0.84

10.60

5

245

0.98

15.65

1.03

10.17

6

196

0.91

14.00

1.10

9.39

7

201

0.88

14.18

1.14

10.33

8

295

1.08

17.18

0.92

9.96

六、数据处理

手机摆实验:

图1

平均重力加速度

=10.11 m/^2

绝对误差

=10.11-9.81= -0.30 m/s^2

相对误差

= 0.030

研究单摆周期与摆长的关系:

图2

平均重力加速度

=10.238 m/^2

绝对误差

=10.238-9.810=0.428 m/s^2

相对误差

=0.044

七、结果陈述

手机摆实验:

测量得出的重力加速度为10.11 m/s^2

大于理论值 9.81m/s^2

研究单摆周期与摆长的关系:

测量得出的重力加速度为10.238 m/s^2

大于理论值 9.81m/s^2

八、实验总结与思考题

测得的重力加速度偏大,造成误差的原因可能有以下几点:

  1. 手机并不是一个质量均匀分布的物体,受力不均匀
  2. 实验用的绳子未达到实验所需的标准
  3. 手机与墙体之间存在摩擦力

可以采取以下方法改进:

  1. 使用实验专用的细绳
  2. 尽量选择摩擦系数较小的墙体,如瓷砖面等

研究单摆周期与摆长的关系:

由图2的图形为一条直线可知

单摆的周期与摆长的平方根成正比

(by 归忆)

大学物理实验中,杨氏模量是一个重要的力学参数,用于描述材料抵抗形变的能力。以下是关于深圳大学大学物理实验中与杨氏模量相关的实验内容、计算方法及数据处理的信息。 --- ### 关于杨氏模量的实验原理 杨氏模量(Young's Modulus)定义为体受拉伸或压缩时应力与应变的比例系数。其公式表示如下: $$E = \frac{\sigma}{\epsilon} = \frac{F/A}{\Delta L/L_0}$$ 其中: - $E$ 是杨氏模量; - $\sigma$ 是正应力 ($F/A$); - $\epsilon$ 是纵向应变 ($\Delta L / L_0$); - $F$ 是施加力; - $A$ 是截面积; - $\Delta L$ 是长度变化量; - $L_0$ 是初始长度。 --- ### 实验装置与测量过程 通常使用的实验设备包括金属丝、光杠杆、望远镜等。具体步骤可能涉及以下几个方面: 1. 调整光杠杆和望远尺的位置,确保系统稳定。 2. 施加不同重量的砝码,记录对应的刻度读数。 3. 利用几何关系将位移转换为实际长度的变化值。 --- ### 数据处理方式 对于获得的一系列数据点 $(m_i, x_i)$ ,可以通过以下线性拟合得到斜率$k$来间接求解杨氏模量: $$x=\frac{ML^2k}{dYg}$$ 这里$x$代表标记移动距离;其他符号意义分别为质量$m$、固定段长$L$、直径$d$以及重力加速度$g$. 最终结果表达式简化成比例因子乘以已知常数值的形式给出最终答案。 同时需要注意误差分析环节,在整个过程中考虑随机不确定性和系统偏差的影响因素,并合理估算总相对不确定性范围。 --- ### 注意事项 为了保证精度,建议多次重复每一步骤的操作流程并且取平均值得出结论。此外还要特别留意单位换算统一标准问题以免造成不必要的麻烦。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归忆_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值