【深圳大学大物实验】太阳能电池的特性测量

一、实验目的

1. 了解光伏效应的基本原理

2. 测定太阳能电池的输出特性、开路电压和短路电流

3. 讨论输出功率和负载电阻的关系

二、实验原理

光电池的输出功率最大时有Pmax=Umax*Imax。

这里Umax和Imax表示输出功率最大值时对应的电压和电流。

输出功率的最大值Pmax小于开路电压与短路电流的乘积,定义它们的比值为填充因数

填充因数是反映电池性能的一个重要参数,一定程度决定了光电池的能量转化效率。

填充因数越大,太阳能电池的输出特性曲线越接近矩形,光电转化效率越高。

填充因数典型值处于0.65到0.85之间,性能更好的电池可以达到更高。

本实验中测出输出特性曲线之后,可以用每个点的电压和电流相乘找到最大总功率,进而得到填充因数。

三、实验仪器

光伏电池、光源、光源电源、万用表

四、实验内容

1. 连接电路图

2. 左边万用表作为电流表,量程选200mA。右边万用表作为电压表,量程选为20V;

3. 打开光源电源,让光照射在太阳能电池上;

4. 打开电池板放大图,把可变电阻的阻值调节至零(靠近a点);

5. 调节光照功率,使电流的大小约为45mA(短路电流);

然后断开电路,记录此时的开路电压U0;

6. 逐渐增大电阻阻值,记录太阳能电池的电压和电流的变化值,记录数据至表1;

7. 把电阻再次减小为零,调节光照功率,使电流大小为35mA、25mA和15mA,并重复上面的步骤,记录至表格2、3和4;

8. 由短路电流和开路电压计算电池的内阻,与输出功率最大时对应的负载电阻相比较,填入表5。计算开路电压与短路电流的乘积,以及填充因数,填入表6。

五、数据记录

表1 短路电流Is==45.0mA时测得的电流和电压值(U0=2.05)

测量次数

1

2

3

4

5

6

7

8

U(V)

0.01

0.47

0.92

1.37

1.7

1.78

1.83

1.86

I(mA)

45

45

45

45

41.8

35.3

30.2

26.3

R(Ω)

0.22

10.44

20.44

30.44

40.67

50.42

60.6

70.72

P(mW)

0.45

21.15

41.4

61.65

71.06

62.83

55.27

48.92

表2 短路电流Is==35.0mA时测得的电流和电压值(U0=2.01)

测量次数

1

2

3

4

5

6

7

8

U(V)

0.01

0.36

0.71

1.07

1.42

1.67

1.75

1.79

I(mA)

35

35

35

35

34.9

33

28.8

25.4

R(Ω)

0.29

10.29

20.29

30.57

40.69

50.61

60.76

70.47

P(mW)

0.35

12.6

24.85

37.45

49.56

55.11

50.4

45.47

表3 短路电流Is==25.1mA时测得的电流和电压值(U0=1.97)

测量次数

1

2

3

4

5

6

7

8

9

10

U(V)

0.01

0.26

0.51

0.77

1.02

1.27

1.52

1.66

1.72

1.75

I(mA)

25.1

25.1

25.1

25.1

25.1

25.1

25

23.5

21.3

19.3

R(Ω)

0.4

10.36

20.32

30.68

40.64

50.6

60.8

70.64

80.75

90.67

P(mW)

0.25

6.53

12.8

19.33

25.6

31.88

38

39.01

36.64

33.78

表4 短路电流Is==15.1mA时测得的电流和电压值(U0=1.90)

六、数据处理

表5 电阻Rmax及由r=U0/Is得到的内阻的比较

测量值/组数

第一组

第二组

第三组

第四组

Rmax(Ω)

40.67

50.61

70.64

108.11

r(Ω)

45.56

57.43

76.1

125.83

Rmax/r

0.89

0.88

0.93

0.86

表6 最大输出功率与填充因数

测量值/组数

第一组

第二组

第三组

第四组

Pmax(mW)

71.06

55.11

39.01

23.68

U0*Is(mW)

92.25

70.35

49.45

28.69

F

0.77

0.78

0.79

0.83

七、结果陈述

由结果可知,太阳能电池的输出功率最大时对应的电阻,

和由开路电压以及短路电流得到的内阻比较接近,

验证了“负载等于内阻时电池的输出功率最大”的结论。

计算得到的填充因数在0.7以上,说明太阳能电池的转化效率较高。

八、实验总结与思考题

思考题

1. 温度会对太阳能电池带来什么影响?

2. 实验中的路端电压和光电池的电动势有什么关系?

3. 测量得到输出功率最大时的电阻R,与用短路电流和开路电压计算的内阻有一定差异,产生差异的原因主要是什么?

答:

  1. 温度因素也影响着太阳能电池的性能。当温度升高时其开路电压下降呈线性关系。不同的材料的太阳能电池,都有着自己的工作温度范围。而对于某一个太阳能电池来讲,在不同的温度时,为得到最大的输出功率所需的最佳负载也不同。
  2. 电动势为电池内电压和路端电压之和
  3. 因为电源存在内阻

(by 归忆)

大学物理实验中,杨氏模量是一个重要的力学参数,用于描述材料抵抗形变的能力。以下是关于深圳大学大学物理实验中与杨氏模量相关的实验内容、计算方法及数据处理的信息。 --- ### 关于杨氏模量的实验原理 杨氏模量(Young's Modulus)定义为体受拉伸或压缩时应力与应变的比例系数。其公式表示如下: $$E = \frac{\sigma}{\epsilon} = \frac{F/A}{\Delta L/L_0}$$ 其中: - $E$ 是杨氏模量; - $\sigma$ 是正应力 ($F/A$); - $\epsilon$ 是纵向应变 ($\Delta L / L_0$); - $F$ 是施加力; - $A$ 是截面积; - $\Delta L$ 是长度变化量; - $L_0$ 是初始长度。 --- ### 实验装置与测量过程 通常使用的实验设备包括金属丝、光杠杆、望远镜等。具体步骤可能涉及以下几个方面: 1. 调整光杠杆和望远尺的位置,确保系统稳定。 2. 施加不同重量的砝码,记录对应的刻度读数。 3. 利用几何关系将位移转换为实际长度的变化值。 --- ### 数据处理方式 对于获得的一系列数据点 $(m_i, x_i)$ ,可以通过以下线性拟合得到斜率$k$来间接求解杨氏模量: $$x=\frac{ML^2k}{dYg}$$ 这里$x$代表标记移动距离;其他符号意义分别为质量$m$、固定段长$L$、直径$d$以及重力加速度$g$. 最终结果表达式简化成比例因子乘以已知常数值的形式给出最终答案。 同时需要注意误差分析环节,在整个过程中考虑随机不确定性和系统偏差的影响因素,并合理估算总相对不确定性范围。 --- ### 注意事项 为了保证精度,建议多次重复每一步骤的操作流程并且取平均值得出结论。此外还要特别留意单位换算统一标准问题以免造成不必要的麻烦。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

归忆_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值