欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与目标
在信息时代,新闻的数量和种类日益增多,如何快速准确地分类新闻成为了一个重要的挑战。传统的新闻分类方法往往依赖于人工标注和分类,这种方式效率低下、主观性强,且难以应对大规模的数据。因此,本项目旨在利用深度学习技术,特别是基于Django和Tensorflow的卷积神经网络(CNN),开发一个智能新闻分类系统,以提高新闻分类的效率和准确性。
二、系统组成
本系统主要包括数据预处理、模型训练、新闻分类和结果展示四个部分。
数据预处理:收集并整理包含多种类别的新闻数据集,如财经、房产、教育、科技等。对数据进行预处理,包括文本清洗、分词、去停用词、向量化等操作,以便于后续模型的训练。
模型训练:利用Tensorflow深度学习框架构建卷积神经网络模型,对预处理后的新闻数据集进行训练。通过调整模型参数、优化器设置等,使模型能够学习到新闻文本中的特征和模式,并准确地进行分类。
新闻分类:将待分类的新闻文本输入到训练好的模型中,模型会自动提取文本中的特征,并输出分类结果。分类结果将包括新闻所属的类别和相应的置信度。
结果展示:基于Django框架,开发一个用户友好的Web界面,用于展示新闻分类的结果。用户可以通过该界面上传新闻文本,并查看分类结果和相关的统计分析信息。
三、技术实现
深度学习框架:使用Tensorflow深度学习框架构建卷积神经网络模型。

最低0.47元/天 解锁文章
806

被折叠的 条评论
为什么被折叠?



