PL-ranking: A Novel Ranking Method for Cross-Modal Retrieval

摘要

由于优化排序的前几位在实践中更加可靠,我们专注于提升排序列表的前几位的精度。

首先,我们使用了一个pairwise的排序loss去优化排序列表的前几位。也就是WARP.

其次,考虑到pairwise的方式没有考虑所有不同类别的样本,我们使用了listwise的方式

去最大化类间距离,最小化类内距离。通过这种方式,类信息被很好地保留并且迭代的

次数也有效地下降。

最后,低秩约束被用于优化特征和标签的关系。因为将不同模态映射到公共子空间后,

可以增强它们之间的相关性。

优化,采用最新的FAST-SSGD方法进行U和V的优化,采用SVD分解和QR分解等,这

一种新的思路,而不是之前的梯度下降的思路。

用图示来表示pairwise,listwise的作用

(a)表示原始样本的分布,圆是图片,方形是文本,相同的颜色即为同一类,同时红色代表

     距离最近的错误类,也就是top-1的错误。

(b)表示pairwise ranking的作用,只把top-1的错误踢出去,却没有注意两点:同类的样本y2,

     y3依然离x很远;不同类的样本像是y2,y4没有拉开。

(c)把pairwise和listwise结合起来,效果非常好,既分开了那个刺头,同时也有效地将同类样

     本拉近,不同类的样本推远。

关于保持低秩的好处

由于标签/特征关联向量可以通过映射的左/右奇异向量来明确描述,因此基于低秩的映射

正则化可以有效地利用标签与特征之间的相关性。

然后在低维子空间中增强各特征间的相关性。此外,低秩约束也增强了映射对高维数据的

可扩展性。

由于语义空间的内在维数通常比原始特征空间低得多,我们使用低秩约束来挖掘数据中嵌

入的低维子空间结构。

提出算法

有两个线性映射U和V,我们通过内积来表示图片和样本的相似度。

                                  

我们的损失函数定义为

                  

L(U,V)为两两损失之和,采用抽样手法优化排名靠前的错误项。

Ψ(U,V)表示为列表损失之和,通过约束最近邻的正确邻居和最近邻的错误邻居,用这一种方法

来保存类信息。

Ω(U,V)是一个低秩约束,通过探索数据中嵌入的低维子空间结构来增强映射数据的相关性。

λ > 0和γ > 0是平衡不同约束权值的权衡参数。

Pairwise ranking loss constraint

我们采用WARP.

         

其中,图片检索文本

               

                                   

                                

同理,文本检索图片

           

                                            

优化方法见上一篇博客。

Listwise loss constraint

为什么要采用Lisewise Loss呢?

  • 由于有限迭代的随机性,一些罕见的查询可能不会在大型训练集中进行采样。
  • 在每个采样阶段,一个正样本只找到1个最近邻,然后排序损失近似于成对样本的损失。由于

       查询样本在一个大型数据集中有很多最近邻,它可能需要更多的迭代来收敛。

                    

            

           

Low-rank constraint

由于语义空间的内在维数通常比原始特征空间低得多,我们使用低秩约束来挖掘数据中嵌入的

低维子空间结构。

||U||*和||V||*就代表nuclear norm.

                                  

映射的左/右奇异向量明确地描述了标签/特征相关性向量,因此基于低秩的正则化可以有效地

利用标签和特征相关性。

                                

我们可以通过对其奇异值求和来测量U的复杂性,即我们应该保留多少个U的奇异值或奇异

向量Mi(U)和Ni(U).

                                         

当我们保留最大的r'个U的奇异值,U的秩等于r'.

通过bFAST-SSGD优化

只要记住映射矩阵的低秩优化有一种bFAST-SSGD的方式。

整体算法

注意第三步有一个步长的学习。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值